U
    sVc(                  r   @  s`  d dl mZ dZdZg ZeD ]HZzee W q ek
rb Z ze	e de  W 5 dZ[X Y qX qer|edd
e [[[d dlmZ zd d	lmZmZmZ W n: ek
r Z zejZed
e deW 5 dZ[X Y nX [[[d dlmZmZmZmZmZmZ d dlZ d dl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZY d dlZm[Z[ d dl\m]Z] d dl^m_Z_ d dl`maZa d dlbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZp d dl mqZqmrZrmsZsmtZtmuZumvZv d dl mwZw d dlxmyZy d dlzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d dlmZ e Zeded ZedZ[[dddgZd d!d"d#Zd$d% Zd&Zd'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddddddddgrZdS )    )annotationsZrestructuredtext)numpyZpytzZdateutilz: Nz(Unable to import required dependencies:

)is_numpy_dev)	hashtablelibtslibzC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --force' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions)8
ArrowDtype	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeFloat32DtypeFloat64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
RangeIndex
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaFlagsGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiesfrom_dummiescutqcut)apiarrayserrorsioplottingtseries)testing)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_htmlread_xml	read_json
read_stataread_sas	read_spss)_json_normalize)test)get_versionszclosest-tagversionzfull-revisionidFloat64Index
Int64IndexUInt64Indexz	list[str])returnc                   C  s   t t  t S )N)listglobalskeys__deprecated_num_index_names r   r   3/tmp/pip-unpacked-wheel-xj8nt62q/pandas/__init__.py__dir__   s    r   c                 C  s   dd l }| tkrL|jd|  dtdd ddlm}m}m} |||d|  S | dkrt|jdtdd dd	lm} |S | d
kr|jdtdd dd l	}|S | dkr|jd|  dtdd t
| di S | dkr|jdtdd ddlm} |S td|  dd S )Nr   zpandas.zx is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.   )
stacklevel)r}   r~   r   datetimezThe pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime module instead.)r   npzvThe pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy directly instead.>   SparseSeriesSparseDataFramezThe zr class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version.r   SparseArrayzThe pandas.SparseArray class is deprecated and will be removed from pandas in a future version. Use pandas.arrays.SparseArray instead.)r   z"module 'pandas' has no attribute '')warningsr   warnFutureWarningpandas.core.apir}   r~   r   r   r   typepandas.core.arrays.sparser   AttributeError)namer   r}   r~   r   dtr   Z_SparseArrayr   r   r   __getattr__   s\    

r   a  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
r   r   rC   r   r&   rF   r8   r+   r   ra   rb   r<   r   r   r=   ri   r%   r-   r   r   r   r   r6   r   r)   r(   r    r.   rA   r/   r   r,   r'   rE   rG   r   r1   r*   r3   r   r   r   r   rY   rB   rZ   r5   rK   rR   rW   r4   r   r[   rJ   r>   rU   rV   r	   rH   r7   r\   r!   r"   json_normalizerL   rM   rO   rP   rQ   r#   r$   rI   r   r   r0   rS   rT   r]   rX   rn   rd   rc   rq   re   rr   rj   rs   ru   rp   ro   rg   rw   rx   rk   rl   rm   rv   rf   rt   r   rD   r
   r`   rz   r_   r2   r:   r9   rh   r;   r^   r?   r@   rN   )
__future__r   Z__docformat__Z_hard_dependenciesZ_missing_dependenciesZ_dependency
__import__ImportError_eappendjoinZpandas.compatr   Z_is_numpy_devZpandas._libsr   Z
_hashtabler   Z_libr   Z_tslibZ_errr   _moduleZpandas._configr	   r
   r   r   r   r   Zpandas.core.config_initZpandasr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   r   rG   Zpandas.tseries.apirH   Zpandas.tseriesrI   Zpandas.core.computation.apirJ   Zpandas.core.reshape.apirK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   Zpandas.util._print_versionsr`   Zpandas.io.apira   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   rx   Zpandas.io.jsonry   r   Zpandas.util._testerrz   Zpandas._versionr{   vget__version__Z__git_version__r   r   r   __doc____all__r   r   r   r   <module>   sD  (
 
A@ h!

G,