U
    sVc                  	   @  s0  d dl mZ d dlmZmZ d dlZd dlmZ d dlm	Z	m
Z
mZmZmZ d dlmZ d dlmZmZ d dlmZ d d	lmZ e	rd d
lmZmZmZ edZedZedZedZedZ ddeeeee ddZ!edZ"edZ#dddede"e#ddZ$edZ%ddddddZ&dddd d!d"Z'dHd#d$d%d&d'Z(G d(d) d)eZ)G d*d+ d+e)Z*G d,d- d-e)Z+G d.d/ d/Z,G d0d1 d1e,Z-G d2d3 d3e,Z.G d4d5 d5eZ/G d6d7 d7e/Z0G d8d9 d9e0Z1G d:d; d;e/Z2G d<d= d=e0e2Z3G d>d? d?e/Z4G d@dA dAe4Z5G dBdC dCe4e2Z6ddDdEdFdGZ7dS )I    )annotations)ABCabstractmethodN)dedent)TYPE_CHECKINGIterableIteratorMappingSequence
get_option)DtypeWriteBuffer)format)pprint_thing)	DataFrameIndexSeriesa      max_cols : int, optional
        When to switch from the verbose to the truncated output. If the
        DataFrame has more than `max_cols` columns, the truncated output
        is used. By default, the setting in
        ``pandas.options.display.max_info_columns`` is used.aR      show_counts : bool, optional
        Whether to show the non-null counts. By default, this is shown
        only if the DataFrame is smaller than
        ``pandas.options.display.max_info_rows`` and
        ``pandas.options.display.max_info_columns``. A value of True always
        shows the counts, and False never shows the counts.zd
    null_counts : bool, optional
        .. deprecated:: 1.2.0
            Use show_counts instead.a      >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
    >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
    ...                   "float_col": float_values})
    >>> df
        int_col text_col  float_col
    0        1    alpha       0.00
    1        2     beta       0.25
    2        3    gamma       0.50
    3        4    delta       0.75
    4        5  epsilon       1.00

    Prints information of all columns:

    >>> df.info(verbose=True)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Data columns (total 3 columns):
     #   Column     Non-Null Count  Dtype
    ---  ------     --------------  -----
     0   int_col    5 non-null      int64
     1   text_col   5 non-null      object
     2   float_col  5 non-null      float64
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes

    Prints a summary of columns count and its dtypes but not per column
    information:

    >>> df.info(verbose=False)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Columns: 3 entries, int_col to float_col
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes

    Pipe output of DataFrame.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:

    >>> import io
    >>> buffer = io.StringIO()
    >>> df.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260

    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big DataFrames and fine-tune memory optimization:

    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> df = pd.DataFrame({
    ...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
    ... })
    >>> df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 22.9+ MB

    >>> df.info(memory_usage='deep')
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 165.9 MBz    DataFrame.describe: Generate descriptive statistics of DataFrame
        columns.
    DataFrame.memory_usage: Memory usage of DataFrame columns.r   z and columns )klassZtype_subZmax_cols_subshow_counts_subnull_counts_subZexamples_subZsee_also_subZversion_added_suba      >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> s = pd.Series(text_values, index=int_values)
    >>> s.info()
    <class 'pandas.core.series.Series'>
    Int64Index: 5 entries, 1 to 5
    Series name: None
    Non-Null Count  Dtype
    --------------  -----
    5 non-null      object
    dtypes: object(1)
    memory usage: 80.0+ bytes

    Prints a summary excluding information about its values:

    >>> s.info(verbose=False)
    <class 'pandas.core.series.Series'>
    Int64Index: 5 entries, 1 to 5
    dtypes: object(1)
    memory usage: 80.0+ bytes

    Pipe output of Series.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:

    >>> import io
    >>> buffer = io.StringIO()
    >>> s.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260

    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big Series and fine-tune memory optimization:

    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6))
    >>> s.info()
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 7.6+ MB

    >>> s.info(memory_usage='deep')
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 55.3 MBzp    Series.describe: Generate descriptive statistics of Series.
    Series.memory_usage: Memory usage of Series.r   z
.. versionadded:: 1.4.0
a  
    Print a concise summary of a {klass}.

    This method prints information about a {klass} including
    the index dtype{type_sub}, non-null values and memory usage.
    {version_added_sub}
    Parameters
    ----------
    verbose : bool, optional
        Whether to print the full summary. By default, the setting in
        ``pandas.options.display.max_info_columns`` is followed.
    buf : writable buffer, defaults to sys.stdout
        Where to send the output. By default, the output is printed to
        sys.stdout. Pass a writable buffer if you need to further process
        the output.    {max_cols_sub}
    memory_usage : bool, str, optional
        Specifies whether total memory usage of the {klass}
        elements (including the index) should be displayed. By default,
        this follows the ``pandas.options.display.memory_usage`` setting.

        True always show memory usage. False never shows memory usage.
        A value of 'deep' is equivalent to "True with deep introspection".
        Memory usage is shown in human-readable units (base-2
        representation). Without deep introspection a memory estimation is
        made based in column dtype and number of rows assuming values
        consume the same memory amount for corresponding dtypes. With deep
        memory introspection, a real memory usage calculation is performed
        at the cost of computational resources. See the
        :ref:`Frequently Asked Questions <df-memory-usage>` for more
        details.
    {show_counts_sub}{null_counts_sub}

    Returns
    -------
    None
        This method prints a summary of a {klass} and returns None.

    See Also
    --------
    {see_also_sub}

    Examples
    --------
    {examples_sub}
    zstr | Dtypeintstr)sspacereturnc                 C  s   t | d| |S )a  
    Make string of specified length, padding to the right if necessary.

    Parameters
    ----------
    s : Union[str, Dtype]
        String to be formatted.
    space : int
        Length to force string to be of.

    Returns
    -------
    str
        String coerced to given length.

    Examples
    --------
    >>> pd.io.formats.info._put_str("panda", 6)
    'panda '
    >>> pd.io.formats.info._put_str("panda", 4)
    'pand'
    N)r   ljust)r   r    r   :/tmp/pip-unpacked-wheel-xj8nt62q/pandas/io/formats/info.py_put_str-  s    r    float)numsize_qualifierr   c                 C  sB   dD ],}| dk r(| d| d|   S | d } q| d| dS )a{  
    Return size in human readable format.

    Parameters
    ----------
    num : int
        Size in bytes.
    size_qualifier : str
        Either empty, or '+' (if lower bound).

    Returns
    -------
    str
        Size in human readable format.

    Examples
    --------
    >>> _sizeof_fmt(23028, '')
    '22.5 KB'

    >>> _sizeof_fmt(23028, '+')
    '22.5+ KB'
    )bytesZKBZMBZGBZTBg      @z3.1f z PBr   )r"   r#   xr   r   r   _sizeof_fmtG  s
    
r'   bool | str | None
bool | str)memory_usager   c                 C  s   | dkrt d} | S )z5Get memory usage based on inputs and display options.Nzdisplay.memory_usager   )r*   r   r   r   _initialize_memory_usagef  s    r+   c                   @  s   e Zd ZU dZded< ded< eedddd	Zeed
dddZeeddddZ	eeddddZ
eddddZeddddZeddddddddZdS ) BaseInfoaj  
    Base class for DataFrameInfo and SeriesInfo.

    Parameters
    ----------
    data : DataFrame or Series
        Either dataframe or series.
    memory_usage : bool or str, optional
        If "deep", introspect the data deeply by interrogating object dtypes
        for system-level memory consumption, and include it in the returned
        values.
    DataFrame | Seriesdatar)   r*   Iterable[Dtype]r   c                 C  s   dS )z
        Dtypes.

        Returns
        -------
        dtypes : sequence
            Dtype of each of the DataFrame's columns (or one series column).
        Nr   selfr   r   r   dtypes  s    zBaseInfo.dtypesMapping[str, int]c                 C  s   dS )!Mapping dtype - number of counts.Nr   r1   r   r   r   dtype_counts  s    zBaseInfo.dtype_countsSequence[int]c                 C  s   dS )BSequence of non-null counts for all columns or column (if series).Nr   r1   r   r   r   non_null_counts  s    zBaseInfo.non_null_countsr   c                 C  s   dS )z
        Memory usage in bytes.

        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        Nr   r1   r   r   r   memory_usage_bytes  s    zBaseInfo.memory_usage_bytesr   c                 C  s   t | j| j dS )z0Memory usage in a form of human readable string.
)r'   r:   r#   r1   r   r   r   memory_usage_string  s    zBaseInfo.memory_usage_stringc                 C  s2   d}| j r.| j dkr.d| jks*| jj r.d}|S )Nr   deepobject+)r*   r6   r.   indexZ_is_memory_usage_qualified)r2   r#   r   r   r   r#     s    

zBaseInfo.size_qualifierWriteBuffer[str] | None
int | Nonebool | NoneNonebufmax_colsverboseshow_countsr   c                C  s   d S Nr   )r2   rF   rG   rH   rI   r   r   r   render  s    	zBaseInfo.renderN)__name__
__module____qualname____doc____annotations__propertyr   r3   r6   r9   r:   r<   r#   rK   r   r   r   r   r,   o  s*   


r,   c                   @  s   e Zd ZdZd!ddddddZed	d
ddZedd
ddZedd
ddZedd
ddZ	edd
ddZ
edd
ddZdddddddd ZdS )"DataFrameInfoz0
    Class storing dataframe-specific info.
    Nr   r(   rD   r.   r*   r   c                 C  s   || _ t|| _d S rJ   r.   r+   r*   r2   r.   r*   r   r   r   __init__  s    zDataFrameInfo.__init__r4   r0   c                 C  s
   t | jS rJ   )_get_dataframe_dtype_countsr.   r1   r   r   r   r6     s    zDataFrameInfo.dtype_countsr/   c                 C  s   | j jS )z
        Dtypes.

        Returns
        -------
        dtypes
            Dtype of each of the DataFrame's columns.
        r.   r3   r1   r   r   r   r3     s    
zDataFrameInfo.dtypesr   c                 C  s   | j jS )zz
        Column names.

        Returns
        -------
        ids : Index
            DataFrame's column names.
        )r.   columnsr1   r   r   r   ids  s    
zDataFrameInfo.idsr   c                 C  s
   t | jS z#Number of columns to be summarized.)lenrZ   r1   r   r   r   	col_count  s    zDataFrameInfo.col_countr7   c                 C  s
   | j  S )r8   r.   countr1   r   r   r   r9     s    zDataFrameInfo.non_null_countsc                 C  s(   | j dkrd}nd}| jj d|d S )Nr=   TFr@   r=   )r*   r.   sumr2   r=   r   r   r   r:     s    
z DataFrameInfo.memory_usage_bytesrA   rB   rC   rE   c                C  s   t | |||d}|| d S )N)inforG   rH   rI   )DataFrameInfoPrinter	to_bufferr2   rF   rG   rH   rI   printerr   r   r   rK     s    zDataFrameInfo.render)N)rL   rM   rN   rO   rV   rQ   r6   r3   rZ   r]   r9   r:   rK   r   r   r   r   rR     s     rR   c                   @  s   e Zd ZdZdddddddZddddd	d
dddddddZeddddZeddddZeddddZ	eddddZ
dS )
SeriesInfoz-
    Class storing series-specific info.
    Nr   r(   rD   rS   c                 C  s   || _ t|| _d S rJ   rT   rU   r   r   r   rV     s    zSeriesInfo.__init__)rF   rG   rH   rI   rA   rB   rC   rE   c                C  s,   |d k	rt dt| ||d}|| d S )NzIArgument `max_cols` can only be passed in DataFrame.info, not Series.info)rc   rH   rI   )
ValueErrorSeriesInfoPrinterre   rf   r   r   r   rK     s    zSeriesInfo.renderr7   r0   c                 C  s   | j  gS rJ   r^   r1   r   r   r   r9   /  s    zSeriesInfo.non_null_countsr/   c                 C  s
   | j jgS rJ   rX   r1   r   r   r   r3   3  s    zSeriesInfo.dtypesr4   c                 C  s   ddl m} t|| jS )Nr   )r   )Zpandas.core.framer   rW   r.   )r2   r   r   r   r   r6   7  s    zSeriesInfo.dtype_countsr   c                 C  s$   | j dkrd}nd}| jj d|dS )zMemory usage in bytes.

        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        r=   TFr`   )r*   r.   rb   r   r   r   r:   =  s    	
zSeriesInfo.memory_usage_bytes)N)rL   rM   rN   rO   rV   rK   rQ   r9   r3   r6   r:   r   r   r   r   rh     s     rh   c                   @  s4   e Zd ZdZddddddZedd	d
dZdS )InfoPrinterAbstractz6
    Class for printing dataframe or series info.
    NrA   rD   )rF   r   c                 C  s.   |   }| }|dkrtj}t|| dS )z Save dataframe info into buffer.N)_create_table_builder	get_linessysstdoutfmtZbuffer_put_lines)r2   rF   Ztable_builderlinesr   r   r   re   R  s
    zInfoPrinterAbstract.to_bufferTableBuilderAbstractr0   c                 C  s   dS )z!Create instance of table builder.Nr   r1   r   r   r   rl   Z  s    z)InfoPrinterAbstract._create_table_builder)N)rL   rM   rN   rO   re   r   rl   r   r   r   r   rk   M  s   rk   c                   @  s   e Zd ZdZddddddddd	Zed
dddZeddddZeddddZed
dddZ	dd
dddZ
dddddZddddZdS )rd   a{  
    Class for printing dataframe info.

    Parameters
    ----------
    info : DataFrameInfo
        Instance of DataFrameInfo.
    max_cols : int, optional
        When to switch from the verbose to the truncated output.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    NrR   rB   rC   rD   )rc   rG   rH   rI   r   c                 C  s0   || _ |j| _|| _| || _| || _d S rJ   )rc   r.   rH   _initialize_max_colsrG   _initialize_show_countsrI   )r2   rc   rG   rH   rI   r   r   r   rV   o  s
    zDataFrameInfoPrinter.__init__r   r0   c                 C  s   t dt| jd S )z"Maximum info rows to be displayed.zdisplay.max_info_rows   )r   r\   r.   r1   r   r   r   max_rows|  s    zDataFrameInfoPrinter.max_rowsboolc                 C  s   t | j| jkS )zDCheck if number of columns to be summarized does not exceed maximum.)rw   r]   rG   r1   r   r   r   exceeds_info_cols  s    z&DataFrameInfoPrinter.exceeds_info_colsc                 C  s   t t| j| jkS )zACheck if number of rows to be summarized does not exceed maximum.)rw   r\   r.   rv   r1   r   r   r   exceeds_info_rows  s    z&DataFrameInfoPrinter.exceeds_info_rowsc                 C  s   | j jS r[   rc   r]   r1   r   r   r   r]     s    zDataFrameInfoPrinter.col_count)rG   r   c                 C  s   |d krt d| jd S |S )Nzdisplay.max_info_columnsru   )r   r]   )r2   rG   r   r   r   rs     s    z)DataFrameInfoPrinter._initialize_max_colsrI   r   c                 C  s$   |d krt | j o| j S |S d S rJ   )rw   rx   ry   r2   rI   r   r   r   rt     s    z,DataFrameInfoPrinter._initialize_show_countsDataFrameTableBuilderc                 C  sR   | j rt| j| jdS | j dkr,t| jdS | jr>t| jdS t| j| jdS dS )z[
        Create instance of table builder based on verbosity and display settings.
        rc   with_countsFrc   N)rH   DataFrameTableBuilderVerboserc   rI   DataFrameTableBuilderNonVerboserx   r1   r   r   r   rl     s    
z*DataFrameInfoPrinter._create_table_builder)NNN)rL   rM   rN   rO   rV   rQ   rv   rx   ry   r]   rs   rt   rl   r   r   r   r   rd   _  s       rd   c                   @  sD   e Zd ZdZddddddddZd	d
ddZdddddZdS )rj   a  Class for printing series info.

    Parameters
    ----------
    info : SeriesInfo
        Instance of SeriesInfo.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    Nrh   rC   rD   )rc   rH   rI   r   c                 C  s$   || _ |j| _|| _| || _d S rJ   )rc   r.   rH   rt   rI   )r2   rc   rH   rI   r   r   r   rV     s    zSeriesInfoPrinter.__init__SeriesTableBuilderr0   c                 C  s0   | j s| j dkr t| j| jdS t| jdS dS )zF
        Create instance of table builder based on verbosity.
        Nr~   r   )rH   SeriesTableBuilderVerboserc   rI   SeriesTableBuilderNonVerboser1   r   r   r   rl     s    z'SeriesInfoPrinter._create_table_builderrw   r{   c                 C  s   |d krdS |S d S )NTr   r|   r   r   r   rt     s    z)SeriesInfoPrinter._initialize_show_counts)NN)rL   rM   rN   rO   rV   rl   rt   r   r   r   r   rj     s     rj   c                   @  s   e Zd ZU dZded< ded< eddddZed	dd
dZeddddZ	eddddZ
eddddZeddddZeddddZddddZddddZddd d!Zd"S )#rr   z*
    Abstract builder for info table.
    	list[str]_linesr,   rc   r0   c                 C  s   dS )z-Product in a form of list of lines (strings).Nr   r1   r   r   r   rm     s    zTableBuilderAbstract.get_linesr-   c                 C  s   | j jS rJ   rc   r.   r1   r   r   r   r.     s    zTableBuilderAbstract.datar/   c                 C  s   | j jS )z*Dtypes of each of the DataFrame's columns.)rc   r3   r1   r   r   r   r3     s    zTableBuilderAbstract.dtypesr4   c                 C  s   | j jS )r5   )rc   r6   r1   r   r   r   r6     s    z!TableBuilderAbstract.dtype_countsrw   c                 C  s   t | jjS )z Whether to display memory usage.)rw   rc   r*   r1   r   r   r   display_memory_usage  s    z)TableBuilderAbstract.display_memory_usager   c                 C  s   | j jS )z/Memory usage string with proper size qualifier.)rc   r<   r1   r   r   r   r<     s    z(TableBuilderAbstract.memory_usage_stringr7   c                 C  s   | j jS rJ   )rc   r9   r1   r   r   r   r9     s    z$TableBuilderAbstract.non_null_countsrD   c                 C  s   | j tt| j dS )z>Add line with string representation of dataframe to the table.N)r   appendr   typer.   r1   r   r   r   add_object_type_line  s    z)TableBuilderAbstract.add_object_type_linec                 C  s   | j | jj  dS )z,Add line with range of indices to the table.N)r   r   r.   r@   _summaryr1   r   r   r   add_index_range_line  s    z)TableBuilderAbstract.add_index_range_linec                 C  s4   dd t | j D }| jdd|  dS )z2Add summary line with dtypes present in dataframe.c                 S  s"   g | ]\}}| d |ddqS )(d)r   ).0keyvalr   r   r   
<listcomp>  s    z8TableBuilderAbstract.add_dtypes_line.<locals>.<listcomp>zdtypes: z, N)sortedr6   itemsr   r   join)r2   Zcollected_dtypesr   r   r   add_dtypes_line  s    z$TableBuilderAbstract.add_dtypes_lineN)rL   rM   rN   rO   rP   r   rm   rQ   r.   r3   r6   r   r<   r9   r   r   r   r   r   r   r   rr     s(   
rr   c                   @  s   e Zd ZdZdddddZddd	d
ZddddZeddddZe	ddddZ
e	ddddZe	ddddZddddZdS )r}   z
    Abstract builder for dataframe info table.

    Parameters
    ----------
    info : DataFrameInfo.
        Instance of DataFrameInfo.
    rR   rD   rc   r   c                C  s
   || _ d S rJ   r   r2   rc   r   r   r   rV     s    zDataFrameTableBuilder.__init__r   r0   c                 C  s(   g | _ | jdkr|   n|   | j S )Nr   )r   r]   _fill_empty_info_fill_non_empty_infor1   r   r   r   rm      s
    

zDataFrameTableBuilder.get_linesc                 C  s0   |    |   | jdt| jj d dS )z;Add lines to the info table, pertaining to empty dataframe.zEmpty r;   N)r   r   r   r   r   r.   rL   r1   r   r   r   r   (  s    z&DataFrameTableBuilder._fill_empty_infoc                 C  s   dS z?Add lines to the info table, pertaining to non-empty dataframe.Nr   r1   r   r   r   r   .  s    z*DataFrameTableBuilder._fill_non_empty_infor   c                 C  s   | j jS )z
DataFrame.r   r1   r   r   r   r.   2  s    zDataFrameTableBuilder.datar   c                 C  s   | j jS )zDataframe columns.)rc   rZ   r1   r   r   r   rZ   7  s    zDataFrameTableBuilder.idsr   c                 C  s   | j jS )z-Number of dataframe columns to be summarized.rz   r1   r   r   r   r]   <  s    zDataFrameTableBuilder.col_countc                 C  s   | j d| j  dS z!Add line containing memory usage.zmemory usage: Nr   r   r<   r1   r   r   r   add_memory_usage_lineA  s    z+DataFrameTableBuilder.add_memory_usage_lineN)rL   rM   rN   rO   rV   rm   r   r   r   rQ   r.   rZ   r]   r   r   r   r   r   r}     s   	r}   c                   @  s,   e Zd ZdZddddZddddZdS )	r   z>
    Dataframe info table builder for non-verbose output.
    rD   r0   c                 C  s2   |    |   |   |   | jr.|   dS r   )r   r   add_columns_summary_liner   r   r   r1   r   r   r   r   K  s    z4DataFrameTableBuilderNonVerbose._fill_non_empty_infoc                 C  s   | j | jjdd d S )NZColumnsname)r   r   rZ   r   r1   r   r   r   r   T  s    z8DataFrameTableBuilderNonVerbose.add_columns_summary_lineN)rL   rM   rN   rO   r   r   r   r   r   r   r   F  s   	r   c                   @  s   e Zd ZU dZdZded< ded< ded< d	ed
< eeddddZeddddZ	ddddZ
ddddZddddZeddddZeddddZddddZdddd Zddd!d"Zd#dd$d%Zd#dd&d'Zd(S ))TableBuilderVerboseMixinz(
    Mixin for verbose info output.
    z  r   SPACINGzSequence[Sequence[str]]strrowsr7   gross_column_widthsrw   r   Sequence[str]r0   c                 C  s   dS ).Headers names of the columns in verbose table.Nr   r1   r   r   r   headersb  s    z TableBuilderVerboseMixin.headersc                 C  s   dd | j D S )z'Widths of header columns (only titles).c                 S  s   g | ]}t |qS r   r\   r   colr   r   r   r   j  s     zATableBuilderVerboseMixin.header_column_widths.<locals>.<listcomp>)r   r1   r   r   r   header_column_widthsg  s    z-TableBuilderVerboseMixin.header_column_widthsc                 C  s   |   }dd t| j|D S )zAGet widths of columns containing both headers and actual content.c                 S  s   g | ]}t | qS r   max)r   Zwidthsr   r   r   r   o  s   zETableBuilderVerboseMixin._get_gross_column_widths.<locals>.<listcomp>)_get_body_column_widthszipr   )r2   Zbody_column_widthsr   r   r   _get_gross_column_widthsl  s    
z1TableBuilderVerboseMixin._get_gross_column_widthsc                 C  s   t t| j }dd |D S )z$Get widths of table content columns.c                 S  s   g | ]}t d d |D qS )c                 s  s   | ]}t |V  qd S rJ   r   )r   r&   r   r   r   	<genexpr>w  s     zNTableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>.<genexpr>r   r   r   r   r   r   w  s     zDTableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>)listr   r   )r2   Zstrcolsr   r   r   r   t  s    z0TableBuilderVerboseMixin._get_body_column_widthsIterator[Sequence[str]]c                 C  s   | j r|  S |  S dS )z
        Generator function yielding rows content.

        Each element represents a row comprising a sequence of strings.
        N)r   _gen_rows_with_counts_gen_rows_without_countsr1   r   r   r   	_gen_rowsy  s    z"TableBuilderVerboseMixin._gen_rowsc                 C  s   dS z=Iterator with string representation of body data with counts.Nr   r1   r   r   r   r     s    z.TableBuilderVerboseMixin._gen_rows_with_countsc                 C  s   dS z@Iterator with string representation of body data without counts.Nr   r1   r   r   r   r     s    z1TableBuilderVerboseMixin._gen_rows_without_countsrD   c                 C  s0   | j dd t| j| jD }| j| d S )Nc                 S  s   g | ]\}}t ||qS r   r    )r   headerZ	col_widthr   r   r   r     s   z<TableBuilderVerboseMixin.add_header_line.<locals>.<listcomp>)r   r   r   r   r   r   r   )r2   Zheader_liner   r   r   add_header_line  s    z(TableBuilderVerboseMixin.add_header_linec                 C  s0   | j dd t| j| jD }| j| d S )Nc                 S  s   g | ]\}}t d | |qS )-r   )r   Zheader_colwidthgross_colwidthr   r   r   r     s   z?TableBuilderVerboseMixin.add_separator_line.<locals>.<listcomp>)r   r   r   r   r   r   r   )r2   Zseparator_liner   r   r   add_separator_line  s     z+TableBuilderVerboseMixin.add_separator_linec                 C  s:   | j D ].}| jdd t|| jD }| j| qd S )Nc                 S  s   g | ]\}}t ||qS r   r   )r   r   r   r   r   r   r     s   z;TableBuilderVerboseMixin.add_body_lines.<locals>.<listcomp>)r   r   r   r   r   r   r   )r2   rowZ	body_liner   r   r   add_body_lines  s    

z'TableBuilderVerboseMixin.add_body_linesIterator[str]c                 c  s   | j D ]}| dV  qdS )z7Iterator with string representation of non-null counts.z	 non-nullN)r9   )r2   r_   r   r   r   _gen_non_null_counts  s    
z-TableBuilderVerboseMixin._gen_non_null_countsc                 c  s   | j D ]}t|V  qdS )z5Iterator with string representation of column dtypes.N)r3   r   )r2   Zdtyper   r   r   _gen_dtypes  s    
z$TableBuilderVerboseMixin._gen_dtypesN)rL   rM   rN   rO   r   rP   rQ   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   X  s,   
	
r   c                   @  s   e Zd ZdZddddddZddd	d
ZeddddZddddZddddZ	ddddZ
ddddZddddZdS )r   z:
    Dataframe info table builder for verbose output.
    rR   rw   rD   rc   r   r   c                C  s(   || _ || _t|  | _|  | _d S rJ   rc   r   r   r   r   r   r   r2   rc   r   r   r   r   rV     s    z%DataFrameTableBuilderVerbose.__init__r0   c                 C  sJ   |    |   |   |   |   |   |   | jrF|   dS r   )	r   r   r   r   r   r   r   r   r   r1   r   r   r   r     s    z1DataFrameTableBuilderVerbose._fill_non_empty_infor   c                 C  s   | j rddddgS dddgS )r   z # ZColumnNon-Null Countr   r   r1   r   r   r   r     s    z$DataFrameTableBuilderVerbose.headersc                 C  s   | j d| j d d S )NzData columns (total z
 columns):)r   r   r]   r1   r   r   r   r     s    z5DataFrameTableBuilderVerbose.add_columns_summary_liner   c                 c  s"   t |  |  |  E dH  dS r   )r   _gen_line_numbers_gen_columnsr   r1   r   r   r   r     s
    z5DataFrameTableBuilderVerbose._gen_rows_without_countsc                 c  s(   t |  |  |  |  E dH  dS r   )r   r   r   r   r   r1   r   r   r   r     s    z2DataFrameTableBuilderVerbose._gen_rows_with_countsr   c                 c  s$   t | jD ]\}}d| V  q
dS )z6Iterator with string representation of column numbers.r%   N)	enumeraterZ   )r2   i_r   r   r   r     s    z.DataFrameTableBuilderVerbose._gen_line_numbersc                 c  s   | j D ]}t|V  qdS )z4Iterator with string representation of column names.N)rZ   r   )r2   r   r   r   r   r     s    
z)DataFrameTableBuilderVerbose._gen_columnsN)rL   rM   rN   rO   rV   r   rQ   r   r   r   r   r   r   r   r   r   r   r     s   	r   c                   @  s`   e Zd ZdZdddddZddd	d
ZeddddZddddZe	ddddZ
dS )r   z
    Abstract builder for series info table.

    Parameters
    ----------
    info : SeriesInfo.
        Instance of SeriesInfo.
    rh   rD   r   c                C  s
   || _ d S rJ   r   r   r   r   r   rV     s    zSeriesTableBuilder.__init__r   r0   c                 C  s   g | _ |   | j S rJ   )r   r   r1   r   r   r   rm     s    zSeriesTableBuilder.get_linesr   c                 C  s   | j jS )zSeries.r   r1   r   r   r   r.   	  s    zSeriesTableBuilder.datac                 C  s   | j d| j  dS r   r   r1   r   r   r   r     s    z(SeriesTableBuilder.add_memory_usage_linec                 C  s   dS z<Add lines to the info table, pertaining to non-empty series.Nr   r1   r   r   r   r     s    z'SeriesTableBuilder._fill_non_empty_infoN)rL   rM   rN   rO   rV   rm   rQ   r.   r   r   r   r   r   r   r   r     s   	r   c                   @  s   e Zd ZdZddddZdS )r   z;
    Series info table builder for non-verbose output.
    rD   r0   c                 C  s*   |    |   |   | jr&|   dS r   )r   r   r   r   r   r1   r   r   r   r     s
    z1SeriesTableBuilderNonVerbose._fill_non_empty_infoN)rL   rM   rN   rO   r   r   r   r   r   r     s   r   c                   @  sl   e Zd ZdZddddddZddd	d
ZddddZeddddZddddZ	ddddZ
dS )r   z7
    Series info table builder for verbose output.
    rh   rw   rD   r   c                C  s(   || _ || _t|  | _|  | _d S rJ   r   r   r   r   r   rV   *  s    z"SeriesTableBuilderVerbose.__init__r0   c                 C  sJ   |    |   |   |   |   |   |   | jrF|   dS r   )	r   r   add_series_name_liner   r   r   r   r   r   r1   r   r   r   r   5  s    z.SeriesTableBuilderVerbose._fill_non_empty_infoc                 C  s   | j d| jj  d S )NzSeries name: )r   r   r.   r   r1   r   r   r   r   A  s    z.SeriesTableBuilderVerbose.add_series_name_liner   c                 C  s   | j rddgS dgS )r   r   r   r   r1   r   r   r   r   D  s    z!SeriesTableBuilderVerbose.headersr   c                 c  s   |   E dH  dS r   )r   r1   r   r   r   r   K  s    z2SeriesTableBuilderVerbose._gen_rows_without_countsc                 c  s   t |  |  E dH  dS r   )r   r   r   r1   r   r   r   r   O  s    z/SeriesTableBuilderVerbose._gen_rows_with_countsN)rL   rM   rN   rO   rV   r   r   rQ   r   r   r   r   r   r   r   r   %  s   r   r4   )dfr   c                 C  s   | j  dd  S )zK
    Create mapping between datatypes and their number of occurrences.
    c                 S  s   | j S rJ   r   )r&   r   r   r   <lambda>\      z-_get_dataframe_dtype_counts.<locals>.<lambda>)r3   Zvalue_countsgroupbyra   )r   r   r   r   rW   W  s    rW   )N)8
__future__r   abcr   r   rn   textwrapr   typingr   r   r   r	   r
   Zpandas._configr   Zpandas._typingr   r   Zpandas.io.formatsr   rp   Zpandas.io.formats.printingr   Zpandasr   r   r   Zframe_max_cols_subr   r   Zframe_examples_subZframe_see_also_subZframe_sub_kwargsZseries_examples_subZseries_see_also_subZseries_sub_kwargsZINFO_DOCSTRINGr    r'   r+   r,   rR   rh   rk   rd   rj   rr   r}   r   r   r   r   r   r   rW   r   r   r   r   <module>   s   

V	>3  	SL?Q+83]B 2