U
    O8c                     @   sX   d Z ddlmZ dgZdd Zdd Zdd	 Zd
d Zdd Z	dd Z
G dd dZdS )zEMixin classes for custom array types that don't inherit from ndarray.    )umathNDArrayOperatorsMixinc                 C   s(   z| j dkW S  tk
r"   Y dS X dS )z)True when __array_ufunc__ is set to None.NF)Z__array_ufunc__AttributeError)obj r   4/tmp/pip-unpacked-wheel-fd_gsd75/numpy/lib/mixins.py_disables_array_ufunc   s    r   c                    s    fdd}d ||_|S )z>Implement a forward binary method with a ufunc, e.g., __add__.c                    s   t |rtS  | |S Nr   NotImplementedselfotherufuncr   r   func   s    z_binary_method.<locals>.func__{}__format__name__r   namer   r   r   r   _binary_method   s    r   c                    s    fdd}d ||_|S )zAImplement a reflected binary method with a ufunc, e.g., __radd__.c                    s   t |rtS  || S r	   r
   r   r   r   r   r      s    z&_reflected_binary_method.<locals>.funcz__r{}__r   r   r   r   r   _reflected_binary_method   s    r   c                    s    fdd}d ||_|S )zAImplement an in-place binary method with a ufunc, e.g., __iadd__.c                    s    | || fdS )N)outr   r   r   r   r   r   &   s    z$_inplace_binary_method.<locals>.funcz__i{}__r   r   r   r   r   _inplace_binary_method$   s    r   c                 C   s   t | |t| |t| |fS )zEImplement forward, reflected and inplace binary methods with a ufunc.)r   r   r   )r   r   r   r   r   _numeric_methods,   s    r   c                    s    fdd}d ||_|S )z.Implement a unary special method with a ufunc.c                    s    | S r	   r   )r   r   r   r   r   5   s    z_unary_method.<locals>.funcr   r   r   r   r   r   _unary_method3   s    r   c                   @   s  e Zd ZdZeejdZeejdZ	eej
dZeejdZeejdZeejdZeejd\ZZZeejd	\ZZZeejd
\ZZZeejd\Z Z!Z"eej#d\Z$Z%Z&eej'd\Z(Z)Z*eej+d\Z,Z-Z.eej/dZ0e1ej/dZ2eej3d\Z4Z5Z6eej7d\Z8Z9Z:eej;d\Z<Z=Z>eej?d\Z@ZAZBeejCd\ZDZEZFeejGd\ZHZIZJeKejLdZMeKejNdZOeKejPdZQeKejRdZSdS )r   a  Mixin defining all operator special methods using __array_ufunc__.

    This class implements the special methods for almost all of Python's
    builtin operators defined in the `operator` module, including comparisons
    (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
    deferring to the ``__array_ufunc__`` method, which subclasses must
    implement.

    It is useful for writing classes that do not inherit from `numpy.ndarray`,
    but that should support arithmetic and numpy universal functions like
    arrays as described in `A Mechanism for Overriding Ufuncs
    <https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.

    As an trivial example, consider this implementation of an ``ArrayLike``
    class that simply wraps a NumPy array and ensures that the result of any
    arithmetic operation is also an ``ArrayLike`` object::

        class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
            def __init__(self, value):
                self.value = np.asarray(value)

            # One might also consider adding the built-in list type to this
            # list, to support operations like np.add(array_like, list)
            _HANDLED_TYPES = (np.ndarray, numbers.Number)

            def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
                out = kwargs.get('out', ())
                for x in inputs + out:
                    # Only support operations with instances of _HANDLED_TYPES.
                    # Use ArrayLike instead of type(self) for isinstance to
                    # allow subclasses that don't override __array_ufunc__ to
                    # handle ArrayLike objects.
                    if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
                        return NotImplemented

                # Defer to the implementation of the ufunc on unwrapped values.
                inputs = tuple(x.value if isinstance(x, ArrayLike) else x
                               for x in inputs)
                if out:
                    kwargs['out'] = tuple(
                        x.value if isinstance(x, ArrayLike) else x
                        for x in out)
                result = getattr(ufunc, method)(*inputs, **kwargs)

                if type(result) is tuple:
                    # multiple return values
                    return tuple(type(self)(x) for x in result)
                elif method == 'at':
                    # no return value
                    return None
                else:
                    # one return value
                    return type(self)(result)

            def __repr__(self):
                return '%s(%r)' % (type(self).__name__, self.value)

    In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
    the result is always another ``ArrayLike``:

        >>> x = ArrayLike([1, 2, 3])
        >>> x - 1
        ArrayLike(array([0, 1, 2]))
        >>> 1 - x
        ArrayLike(array([ 0, -1, -2]))
        >>> np.arange(3) - x
        ArrayLike(array([-1, -1, -1]))
        >>> x - np.arange(3)
        ArrayLike(array([1, 1, 1]))

    Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
    with arbitrary, unrecognized types. This ensures that interactions with
    ArrayLike preserve a well-defined casting hierarchy.

    .. versionadded:: 1.13
    ltleeqnegtgeaddsubmulmatmultruedivfloordivmoddivmodpowlshiftrshiftandxorornegposabsinvertN)Tr   
__module____qualname____doc__r   umZless__lt__Z
less_equal__le__equal__eq__	not_equal__ne__Zgreater__gt__Zgreater_equal__ge__r   r$   __add____radd____iadd__subtract__sub____rsub____isub__multiply__mul____rmul____imul__r'   
__matmul____rmatmul____imatmul__Ztrue_divide__truediv____rtruediv____itruediv__Zfloor_divide__floordiv____rfloordiv____ifloordiv__	remainder__mod____rmod____imod__r+   
__divmod__r   __rdivmod__power__pow____rpow____ipow__Z
left_shift
__lshift____rlshift____ilshift__Zright_shift
__rshift____rrshift____irshift__Zbitwise_and__and____rand____iand__Zbitwise_xor__xor____rxor____ixor__Z
bitwise_or__or____ror____ior__r   negative__neg__Zpositive__pos__absolute__abs__r5   
__invert__r   r   r   r   r   ;   sR   P 
 
 
 
 
N)r8   Z
numpy.corer   r9   __all__r   r   r   r   r   r   r   r   r   r   r   <module>   s   

