U
    9%e                     @   s\   d Z ddlZddlmZ dddgZeddd	dZeddd
dZeddddZdS )zTrophic levels    N)not_implemented_fortrophic_levelstrophic_differencestrophic_incoherence_parameterZ
undirectedweightc              
   C   s.  ddl }tj| |dj }|j|dd}||dk dd|dkf }|||dk dd|jf  }|jd }||}z|j	
|| }W n6 |j	jk
r }	 zd}
t|
|	W 5 d}	~	X Y nX |jddd }i }dd | jD }|D ]}d||< qd	d | jD }t|D ]\}}|| ||< q|S )
a  Compute the trophic levels of nodes.

    The trophic level of a node $i$ is

    .. math::

        s_i = 1 + \frac{1}{k^{in}_i} \sum_{j} a_{ij} s_j

    where $k^{in}_i$ is the in-degree of i

    .. math::

        k^{in}_i = \sum_{j} a_{ij}

    and nodes with $k^{in}_i = 0$ have $s_i = 1$ by convention.

    These are calculated using the method outlined in Levine [1]_.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    nodes : dict
        Dictionary of nodes with trophic level as the value.

    References
    ----------
    .. [1] Stephen Levine (1980) J. theor. Biol. 83, 195-207
    r   Nr      )ZaxiszTrophic levels are only defined for graphs where every node has a path from a basal node (basal nodes are nodes with no incoming edges).c                 s   s   | ]\}}|d kr|V  qdS r   N .0node_idZdegreer
   r
   e/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/networkx/algorithms/centrality/trophic.py	<genexpr>G   s      z!trophic_levels.<locals>.<genexpr>c                 s   s   | ]\}}|d kr|V  qdS r	   r
   r   r
   r
   r   r   L   s      )numpynxZadjacency_matrixTZtoarraysumZnewaxisshapeeyeZlinalginvZLinAlgErrorZNetworkXErrorZ	in_degree	enumerate)Gr   npaZrowsumpnninerrmsgylevelsZzero_node_idsr   Znonzero_node_idsr
   r
   r   r      s,    "


c                 C   s<   t | |d}i }| jD ] \}}|| ||  |||f< q|S )as  Compute the trophic differences of the edges of a directed graph.

    The trophic difference $x_ij$ for each edge is defined in Johnson et al.
    [1]_ as:

    .. math::
        x_ij = s_j - s_i

    Where $s_i$ is the trophic level of node $i$.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    diffs : dict
        Dictionary of edges with trophic differences as the value.

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   )r   edges)r   r   r"   diffsuvr
   r
   r   r   S   s
    Fc                 C   sb   ddl }|rt| |d}n6tt| }|r@|  }|| n| }t||d}|t| S )a+  Compute the trophic incoherence parameter of a graph.

    Trophic coherence is defined as the homogeneity of the distribution of
    trophic distances: the more similar, the more coherent. This is measured by
    the standard deviation of the trophic differences and referred to as the
    trophic incoherence parameter $q$ by [1].

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    cannibalism: Boolean
        If set to False, self edges are not considered in the calculation

    Returns
    -------
    trophic_incoherence_parameter : float
        The trophic coherence of a graph

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   Nr   )	r   r   listr   Zselfloop_edgescopyZremove_edges_fromZstdvalues)r   r   Zcannibalismr   r$   Z
self_loopsZG_2r
   r
   r   r   u   s    )r   )r   )r   F)	__doc__Znetworkxr   Znetworkx.utilsr   __all__r   r   r   r
   r
   r
   r   <module>   s   
J!