U
    9%e                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlZddl	m
Z
 ddlmZ e
ZdgZed	dd
dZdd Zdd Zdd Zdd ZdS )z,
Moody and White algorithm for k-components
    )defaultdict)combinations)
itemgetterN)edmonds_karp)not_implemented_fork_componentsZdirectedc              	      s  t t}|dkrt}t D ]&}t|}t|dkr|d | q fddt D }|D ]&}t|}t|dkrb|d | qb|D ]}t|dkrqtj	||d}	|	dkr||	 t| ttj
||	|d}
|	t||
|	fg}|r|d \}}zzt|}||}tj	||d}||krH|dkrH|| t| ttj
|||d}
|
rx||t||
|f W q tk
r   |  Y qX qqt|S )	a7  Returns the k-component structure of a graph G.

    A `k`-component is a maximal subgraph of a graph G that has, at least,
    node connectivity `k`: we need to remove at least `k` nodes to break it
    into more components. `k`-components have an inherent hierarchical
    structure because they are nested in terms of connectivity: a connected
    graph can contain several 2-components, each of which can contain
    one or more 3-components, and so forth.

    Parameters
    ----------
    G : NetworkX graph

    flow_func : function
        Function to perform the underlying flow computations. Default value
        :meth:`edmonds_karp`. This function performs better in sparse graphs with
        right tailed degree distributions. :meth:`shortest_augmenting_path` will
        perform better in denser graphs.

    Returns
    -------
    k_components : dict
        Dictionary with all connectivity levels `k` in the input Graph as keys
        and a list of sets of nodes that form a k-component of level `k` as
        values.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is directed.

    Examples
    --------
    >>> # Petersen graph has 10 nodes and it is triconnected, thus all
    >>> # nodes are in a single component on all three connectivity levels
    >>> G = nx.petersen_graph()
    >>> k_components = nx.k_components(G)

    Notes
    -----
    Moody and White [1]_ (appendix A) provide an algorithm for identifying
    k-components in a graph, which is based on Kanevsky's algorithm [2]_
    for finding all minimum-size node cut-sets of a graph (implemented in
    :meth:`all_node_cuts` function):

        1. Compute node connectivity, k, of the input graph G.

        2. Identify all k-cutsets at the current level of connectivity using
           Kanevsky's algorithm.

        3. Generate new graph components based on the removal of
           these cutsets. Nodes in a cutset belong to both sides
           of the induced cut.

        4. If the graph is neither complete nor trivial, return to 1;
           else end.

    This implementation also uses some heuristics (see [3]_ for details)
    to speed up the computation.

    See also
    --------
    node_connectivity
    all_node_cuts
    biconnected_components : special case of this function when k=2
    k_edge_components : similar to this function, but uses edge-connectivity
        instead of node-connectivity

    References
    ----------
    .. [1]  Moody, J. and D. White (2003). Social cohesion and embeddedness:
            A hierarchical conception of social groups.
            American Sociological Review 68(1), 103--28.
            http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf

    .. [2]  Kanevsky, A. (1993). Finding all minimum-size separating vertex
            sets in a graph. Networks 23(6), 533--541.
            http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

    .. [3]  Torrents, J. and F. Ferraro (2015). Structural Cohesion:
            Visualization and Heuristics for Fast Computation.
            https://arxiv.org/pdf/1503.04476v1

    N   c                    s   g | ]}  |qS  )subgraph.0cGr	   k/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/networkx/algorithms/connectivity/kcomponents.py
<listcomp>v   s     z k_components.<locals>.<listcomp>   )	flow_func)kr   )r   listdefault_flow_funcnxconnected_componentssetlenappendZbiconnected_componentsZnode_connectivityZall_node_cuts_generate_partitionnextr
   StopIterationpop_reconstruct_k_components)r   r   r   	componentcompZbicomponentsZbicomponentZbicompBr   cutsstackZparent_k	partitionnodesCZthis_kr	   r   r   r      sD    Y

	c                 #   sl   t  }tt| | | fddtdD  t |D ]}tj	fdd|D  V  qHdS )as  Merge sets that share k or more elements.

    See: http://rosettacode.org/wiki/Set_consolidation

    The iterative python implementation posted there is
    faster than this because of the overhead of building a
    Graph and calling nx.connected_components, but it's not
    clear for us if we can use it in NetworkX because there
    is no licence for the code.

    c                 3   s2   | ]*\}}t | | @  kr||fV  qd S N)r   )r   uvr   r(   r	   r   	<genexpr>   s     z_consolidate.<locals>.<genexpr>r   c                    s   g | ]} | qS r	   r	   r   n)r(   r	   r   r      s     z _consolidate.<locals>.<listcomp>N)
r   ZGraphdict	enumerateZadd_nodes_fromZadd_edges_fromr   r   r   union)Zsetsr   r   r"   r	   r-   r   _consolidate   s    
r4   c                 #   s   dd }g } fdd|   D dd |D  }| |}t|D ]P}t|}|D ]$}	|	D ]}
|| |
|r\||
 q\qTt||  k rD|| qDt	| d E d H  d S )Nc                    s   t  fdd| | D S )Nc                 3   s   | ]}| kV  qd S r*   r	   r/   r'   r	   r   r.      s     zE_generate_partition.<locals>.has_nbrs_in_partition.<locals>.<genexpr>any)r   noder'   r	   r5   r   has_nbrs_in_partition   s    z2_generate_partition.<locals>.has_nbrs_in_partitionc                    s   h | ]\}}| kr|qS r	   r	   )r   r0   dr   r	   r   	<setcomp>   s      z&_generate_partition.<locals>.<setcomp>c                 S   s   h | ]}|D ]}|qqS r	   r	   )r   cutr0   r	   r	   r   r<      s       r   )
Zdegreer
   r   r   r   addr   orderr   r4   )r   r%   r   r9   
componentsr(   Hccr"   r=   r8   r	   r;   r   r      s    $
r   c                    s   i }t | }ttd|d D ]}||krBtt| | |||< q|| krftt||d  |||< qtj| |    fdd||d  D }|rtt| | | |||< qtt| | |||< q|S )Nr   c                    s&   g | ]}t  fd d|D r|qS )c                 3   s   | ]}| kV  qd S r*   r	   r/   Z
nodes_at_kr	   r   r.      s     z7_reconstruct_k_components.<locals>.<listcomp>.<genexpr>r6   r   rC   r	   r   r      s      z-_reconstruct_k_components.<locals>.<listcomp>)maxreversedranger   r4   r   r3   )Zk_compsresultZmax_kr   Zto_addr	   rC   r   r!      s    r!   c                 C   sB   i }t |  tddD ]$\}}|D ]}|D ]}|||< q,q$q|S )Nr   )key)sorteditemsr   )ZkcompsrG   r   compsr#   r8   r	   r	   r   build_k_number_dict   s    rL   )N)__doc__collectionsr   	itertoolsr   operatorr   Znetworkxr   Znetworkx.algorithms.flowr   Znetworkx.utilsr   r   __all__r   r4   r   r!   rL   r	   r	   r	   r   <module>   s    
