U
    9%e)                    @   s
  d Z ddlZddlZddlZddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ edZejZedZedZdd Ze  Z!dZ"e#ee"Z$e%ee&ee"ee!egZ'e(e'Z)dd Z*dd Z+dd Z,dd Z-dd Z.dd Z/dd Z0dd  Z1d!d" Z2d#d$ Z3d%d& Z4d'd( Z5eej6d)d* Z7eejj6d+d* Z7d,d- Z8eejd.d/ Z9eejjeejj:eejj;eejj<d0d1 Z=eejjeejj:eejj;eejj<dd2d3Z>eej?eej@d4d5 ZAeejjBeejjCd6d7 ZDeejjCd8d9 ZEeejjCd:d; ZFeejjBd<d= ZGeejjCd>d? ZHd@dA ZIdBdC ZJdDdE ZKeejLdFdG ZMdHdI ZNeejOdJdK ZPeejOdLdM ZQdNdO ZReejOdPdQ ZSeejTdRdS ZUeejjTdTdU ZVeejjTdVdW ZWeejjTdXdY ZXeejjYdZd[ ZZeejYd\d] Z[eejjYd^d_ Z\d`da Z]eejjYdbdc Z^eej_ddde Z`eej_dfdg Zaeejj_dhdg Zaeejj_ddidjZbeejcdkdl Zdeejjeeejjfdmdn Zgeejjfdodp Zhdqdr Zieejjfdsdt Zjeejjedudv Zkeejldwdx Zmeejjndydz Zod{d| Zpeejjnd}d~ Zqeejrdd Zseejjtdd Zueejjtdd Zueejjveejjtdd Zueejjvdd Zweejjxdd Zyeejjxdd Zzeejjxdd Z{eejjxdd Z|eej}dd Z~dd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zeejjdd Zeejdd Zeejjdd Zdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd ZeejjddĄ ZeejjddƄ ZeejjddȄ Zeejjddʄ Zdd̄ Zdd΄ ZeejjddЄ ZeejjddЄ Zeejjddӄ ZeejjddՄ Zeejjddׄ Zeejjddل Zeejjddۄ Zeejjddۄ Zeejjddބ Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zeejjdd Zdd ZeejÃdd ZeejjÃdd ZeejjŃdd Zeejjǃdd Zeejjȃdd ZeejjɃdddZeejjʃdd dZeejj˃dd Zeejj˃dddZedd Zeejj̓dd Zeejj̓dd	dZed
d Zedd ZdS (  z6
Implement the random and np.random module functions.
    N)ir)is_nonelike)	intrinsicoverloadregister_jitable)Registryimpl_ret_untrackedimpl_ret_new_ref	signature)typescgutils)arrayobj)NumbaTypeErrorZ
randomimpl    @   c                 C   s   t t| S N)r   Constantint32_tx r   W/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/numba/cpython/randomimpl.py	const_int   s    r   ip  c                 C   sT   |dkst d| }ttd}t|j||}|jd |jd |	|dS )z
    Get a pointer to the given thread-local random state
    (depending on *name*: "py" or "np").
    If the state isn't initialized, it is lazily initialized with
    system entropy.
    )pynpinternalznumba_get_%s_random_stater   ZreadnoneZnounwind)
AssertionErrorr   FunctionTypernd_state_ptr_tr   get_or_insert_functionmodule
attributesaddcall)contextbuildername	func_namefntyfnr   r   r   get_state_ptr4   s    r+   c                 C   s   t | |dS )z@
    Get a pointer to the thread-local Python random state.
    r   r+   r%   r&   r   r   r   get_py_state_ptrE   s    r.   c                 C   s   t | |dS )z?
    Get a pointer to the thread-local Numpy random state.
    r   r,   r-   r   r   r   get_np_state_ptrK   s    r/   c                 C   s   t | |dS )zB
    Get a pointer to the thread-local internal random state.
    r   r,   r-   r   r   r   get_internal_state_ptrQ   s    r0   c                 C   s   t | |ddS Nr   r   gep_inboundsr&   	state_ptrr   r   r   get_index_ptrX   s    r6   c                 C   s   t | |ddS Nr      r2   r4   r   r   r   get_array_ptr[   s    r9   c                 C   s   t | |ddS )Nr      r2   r4   r   r   r   get_has_gauss_ptr^   s    r;   c                 C   s   t | |ddS )Nr      r2   r4   r   r   r   get_gauss_ptra   s    r=   c                 C   s8   t t  tf}t| jj|d}|jd 	d |S )z<
    Get the internal function to shuffle the MT taste.
    Znumba_rnd_shuffler   Z	nocapture)
r   r   VoidTyper   r   r    functionr!   argsZadd_attribute)r&   r)   r*   r   r   r   get_rnd_shuffled   s    rA   c           	   
   C   s"  t ||}||}|d|t}t||, t|}|||f |t	d| W 5 Q R X ||}t
||}|t||d|}||t	d}||| ||||t	d}|||||t	dt	d}|||||t	dt	d}||||t	d	}|S )
zB
    Get the next int32 generated by the PRNG at *state_ptr*.
    >=r   r8         l   VX:    l     _    )r6   loadicmp_unsignedN_constr   if_unlikelyrA   r$   storer   r9   r3   r#   xorlshrand_shl)	r%   r&   r5   ZidxptridxZneed_reshuffler*   Z	array_ptryr   r   r   get_next_int32o   s*    



rR   c                 C   st   | t| ||td}| t| ||td}||t}||t}|||||t	tdt	tdS )zC
    Get the next double generated by the PRNG at *state_ptr*.
          g      Ag      @C)
rM   rR   r   uitofpdoubleZfdivfaddfmulr   r   )r%   r&   r5   abr   r   r   get_next_double   s    
r[   c                    s  t |jd fdd}t t td} d|} |\}}	|" ||}
  	|
t| W 5 Q R X |	r r| 
|}t }
s| 
|}  	|
t  	|tt td} || W 5 Q R X W 5 Q R X  |S )z2
    Get the next integer with width *nbits*.
    r   c                    s     | }t }| jj|jjk r8 ||j}n| jj|jjkrV ||j}r t|jd} 	||} 
||S  	||S d S r1   )subrR   typewidthzexttruncnot_r   r   rM   rN   )nbitsshiftrQ   maskr&   Zc32r%   is_numpyr5   r   r   get_shifted_int   s    z%get_next_int.<locals>.get_shifted_intr   <=)r   r   r]   r   Zalloca_once_valueint64_trH   if_elserK   r_   r\   rR   r#   rO   rG   )r%   r&   r5   rb   rf   rg   retZis_32bZifsmallZiflargelowhightotalr   re   r   get_next_int   s,    

 ro   c                    s,   t | tjr(ttd  fdd}|S d S )Nr   c                    s    | S r   r   rY   r*   r   r   impl   s    zseed_impl.<locals>.impl)
isinstancer   Integerr   
_seed_impl)rY   rr   r   rq   r   	seed_impl   s    rv   c                 C   s   t | tjrtdS d S Nr   )rs   r   rt   ru   seedr   r   r   rv      s    c                    s   t fdd  fddS )Nc                    s    fdd}t tjtj|fS )Nc                    sR   |\}t t  ttf}t|jj|d}|	|t
| | |f | tjd S )NZnumba_rnd_init)r   r   r>   r   r   r   r    r?   r!   r$   r+   Zget_constantr   none)r%   r&   sigr@   Z
seed_valuer)   r*   
state_typer   r   codegen   s    z*_seed_impl.<locals>._impl.<locals>.codegen)r   r   voidZuint32)typingcontextry   r~   r|   r   r   _impl   s    z_seed_impl.<locals>._implc                    s    | S r   r   rx   r   r   r   <lambda>       z_seed_impl.<locals>.<lambda>r   r|   r   )r   r}   r   ru      s    
ru   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S Nr   r+   r[   r%   r&   r{   r@   r5   r   r   r   r~      s    z+random_impl.<locals>._impl.<locals>.codegen)r   r   rV   r   r~   r   r   r   r      s    zrandom_impl.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl.<locals>.<lambda>r   r   r   r   r   random_impl   s    
r   c                      s   t dd   fddS )Nc                 S   s   dd }t tj|fS )Nc                 S   s   t | |d}t| ||S rw   r   r   r   r   r   r~      s    z,random_impl0.<locals>._impl.<locals>.codegen)r   r   float64r   r   r   r   r      s    zrandom_impl0.<locals>._implc                      s     S r   r   r   r   r   r   r      r   zrandom_impl0.<locals>.<lambda>r   r   r   r   r   random_impl0   s    
r   c                 C   sJ   t | rdddS t| tjs8t| tjrFt| jtjrFddd}|S d S )Nc                 S   s
   t j S r   r   randomsizer   r   r   r     r   zrandom_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   emptyflatranger   r   r   outout_flatrP   r   r   r   r   	  s
    
zrandom_impl1.<locals>._impl)N)Nr   rs   r   rt   UniTupledtyper   r   r   r   r   random_impl1   s    

r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS r   _double_preprocessorr   r   r   _gauss_impl)r   musigmaloc_preprocessorscale_preprocessorr   r   r   r     s
    
zgauss_impl.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   r     r   zgauss_impl.<locals>.<lambda>rs   r   Floatrt   r   r   r   r   r   
gauss_impl  s     

r   c                   C   s   dd S )Nc                   S   s   t jddS N              ?r   r   normalr   r   r   r   r   #  r   z np_gauss_impl0.<locals>.<lambda>r   r   r   r   r   np_gauss_impl0   s    r   c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS Nr   r   locr   r   r   r   )  r   z np_gauss_impl1.<locals>.<lambda>rs   r   r   rt   r   r   r   r   np_gauss_impl1&  s    r   c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rw   r   )r   r   scaler   r   r   r   r   r   0  s
    
znp_gauss_impl2.<locals>._implc                    s
    | |S r   r   r   r   r   r   r   r   6  r   z np_gauss_impl2.<locals>.<lambda>r   r   r   r   r   np_gauss_impl2,  s     

r   c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   r   r   standard_normalr   r   r   r   r   <  r   z'standard_normal_impl1.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   @  s
    
z$standard_normal_impl1.<locals>._implr   r   r   r   r   standard_normal_impl19  s    r   c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r   r   r   r   r   r   r   r   N  r   z np_gauss_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   r   r   r   r   r   rP   r   r   r   r   T  s
    
znp_gauss_impl3.<locals>._implrs   r   r   rt   r   r   r   r   r   r   r   r   r   r   np_gauss_impl3I  s*     
 


r   c                    s    fdd}|S )Nc                     sh   d   d } d   d }| |  ||  }|dk r |dkr q@q t dt | | }||  || fS )zG
        Compute a pair of numbers on the normal distribution.
               @r   r          )mathsqrtlog)x1Zx2r2f_randomr   r   compute_gauss_pair^  s    z,_gauss_pair_impl.<locals>.compute_gauss_pairr   )r   r   r   r   r   _gauss_pair_impl]  s    r   c                    s    fdd}|S )Nc                    sJ  |j }| |}tjtjjd }t| |}tj||dd}t||}	t||}
t	||
|
}||\}}|( ||
|	| |td|
 W 5 Q R X |` | |t|tt|dd}t||d\}}|||	 ||| |td|
 W 5 Q R X W 5 Q R X |\}}| ||||||
|S )N)r   r   resultr'   r   r:   r   r8   )return_typeZget_data_typer   r   r+   r   alloca_oncer=   r;   Zis_truerG   rj   rK   r   compile_internalr   r   r   r   Zunpack_tuplerW   rX   )r%   r&   r{   r@   tyZlltyr   r5   rk   Z	gauss_ptrZhas_gauss_ptrZ	has_gaussZthenZ	otherwisepairfirstsecondr   r   r   r   stater   r   r   p  s@    


$z_gauss_impl.<locals>._implr   )r   r   r   r   r   r   r   r   o  s    $r   c                    sr   t j  t| tjr6| jr( fddS  fddS n8t| tjrb| jdkrX fddS dd S ntd|  d S )Nc                    s   |  | S r   )Zsitofpr&   vr   r   r   r     r   z&_double_preprocessor.<locals>.<lambda>c                    s   |  | S r   )rU   r   r   r   r   r     r   r   c                    s   |  | S r   )Zfpextr   r   r   r   r     r   c                 S   s   |S r   r   )_builderr   r   r   r   r     r   z(Cannot convert {} to floating point type)	r   r   
DoubleTypers   rt   signedr   bitwidth	TypeError)valuer   r   r   r     s    


r   c                    s(   t | tjr$tdd   fddS d S )Nc                 S   s   dd }t tj||fS )Nc           	   	   S   s|   |\}| d|td}| d|td}t|||| d}| j|t|f W 5 Q R X t| |d}t	| |||dS )NrB   A   ==r   z getrandbits() limited to 64 bitsr   F)
rH   r   r   rJ   or_	call_convreturn_user_excOverflowErrorr+   ro   )	r%   r&   r{   r@   rb   	too_largeZ	too_smallmsgr5   r   r   r   r~     s    
z0getrandbits_impl.<locals>._impl.<locals>.codegen)r   r   Zuint64)r   kr~   r   r   r   r     s    zgetrandbits_impl.<locals>._implc                    s    | S r   r   r   r   r   r   r     r   z"getrandbits_impl.<locals>.<lambda>)rs   r   rt   r   r   r   r   r   getrandbits_impl  s    
r   c              
      sN  t  td}td}	tj dd}
  |||
   d||8  	 	 
|
||	} || |
 W 5 Q R X   d||	8   	 
|
||	} || |
 W 5 Q R X  
|
t  d| d}j t|f W 5 Q R X ttjjg}t jj|d	 }d
krn |	n}  ||tjgt ttjtj dd fdd}d
kr.  d|	<\}}|  | W 5 Q R X | |  W 5 Q R X W 5 Q R X n|   	|  
|S )Nr   r8   nr   <>rh   zempty range for randrange()zllvm.ctlz.%sr   rc                     s~     d}   d} |   |  t dk} |} d|} || |  |  | d S )Nwhilez	while.endr   rB   )append_basic_blockbranchposition_at_endro   r`   icmp_signedZcbranchrK   )Zbbwhilebbendr   r   r&   r%   r   rb   Zrptrr   r5   r   r   r   get_num  s    




z _randrange_impl.<locals>.get_numr   )r+   r   r   r   r   rK   r\   if_thenr   r#   rG   ZsdivrJ   r   r   
ValueErrorr   Ztrue_bitr]   r    r?   r!   r`   r$   r   r^   rj   mul)r%   r&   startstopstepr   r   r   zerooneZnptrwr   r)   r*   Znm1r   Zis_oneZ
is_not_oner   r   r   _randrange_impl  sD    


r   c                 C   s   t | tjrdd S d S )Nc                 S   s   t d| dS r7   r   	randranger   r   r   r   r     r   z"randrange_impl_1.<locals>.<lambda>rs   r   rt   r   r   r   r   randrange_impl_1  s    r  c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |dS Nr8   r   r   r   r   r   r   r     r   z"randrange_impl_2.<locals>.<lambda>r  r  r   r   r   randrange_impl_2	  s    r  c                 C   s,   |j | kr |jrtjjS tjjS dd S d S )Nc                 S   s   |S r   r   )r   r   Z_tyr   r   r   r     r   z)_randrange_preprocessor.<locals>.<lambda>)r   r   r   Z	IRBuilderZsextr_   )r   r   r   r   r   _randrange_preprocessor  s
    
r  c                    s   t | tjrt |tjrt |tjrt| j|j|jt| j|j|j}tj|t|t	|| t	||t	||t
fdd  fddS d S )Nc                    s&   fdd}t  ||||fS )Nc              	      sD   |\}}}|| }|| }|| }t | |||| dS r   )r   r%   r&   r{   r@   r   r   r   )	llvm_typer   start_preprocessorstep_preprocessorstop_preprocessorr   r   r~   &  s    
  z0randrange_impl_3.<locals>._impl.<locals>.codegenr
   )r   r   r   r   r~   )int_tyr  r   r	  r
  r  r   r   r   $  s    zrandrange_impl_3.<locals>._implc                    s    | ||S r   r   )r   r   r   r   r   r   r   /  r   z"randrange_impl_3.<locals>.<lambda>rs   r   rt   maxr   r   Zfrom_bitwidthr   IntTyper  r   )r   r   r   r   r   )r   r  r  r   r	  r
  r  r   randrange_impl_3  s    





r  c                 C   s$   t | tjr t |tjr dd S d S )Nc                 S   s   t | |d dS r  r   rY   rZ   r   r   r   r   5  r   z randint_impl_1.<locals>.<lambda>r  r  r   r   r   randint_impl_12  s    r  c                 C   s   t | tjrdd S d S )Nc                 S   s   t jd| S r1   r   r   randintrl   r   r   r   r   ;  r   z#np_randint_impl_1.<locals>.<lambda>r  r  r   r   r   np_randint_impl_18  s    r  c                    s   t | tjrt |tjrt| j|jt| j|j}tj|t|t	|| t	||t
fdd  fddS d S )Nc                    s"   fdd}t  |||fS )Nc              	      sB   |\}}|| }|| }t  d}t| |||| dS )Nr8   r   )r   r   r   r  )r  r   r	  r  r   r   r~   K  s      z1np_randint_impl_2.<locals>._impl.<locals>.codegenr
   )r   rl   rm   r~   )r  r  r   r	  r  r   r   r   I  s    z np_randint_impl_2.<locals>._implc                    s
    | |S r   r   rl   rm   r   r   r   r   T  r   z#np_randint_impl_2.<locals>.<lambda>r  )rl   rm   r   r   )r   r  r  r   r	  r  r   np_randint_impl_2>  s    



r  c                    s   t | tjr(t |tjr(t|r(dd S t | tjrt |tjrt |tjsft |tjrt |jtjrt| j|j}tt	d|   fdd}|S d S )Nc                 S   s   t j| |S r   r  rl   rm   r   r   r   r   r   [  r   z#np_randint_impl_3.<locals>.<lambda>intc                    s:   t j| d}|j}t|jD ]}t j| |||< q|S N)r   )r   r   r   r   r   r   r  rl   rm   r   r   r   rP   Zresult_typer   r   r   c  s
    z np_randint_impl_3.<locals>._impl)
rs   r   rt   r   r   r   r  r   getattrr   )rl   rm   r   r   r   r   r  r   np_randint_impl_3W  s"    

r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   uniformr   r   r   r   r   n  r   z"np_uniform_impl0.<locals>.<lambda>r   r   r   r   r   np_uniform_impl0l  s    r"  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS r   r   r   r   r   uniform_impl)r   rY   rZ   low_preprocessorhigh_preprocessorr   r   r   r   u  s      zuniform_impl2.<locals>._implc                    s
    | |S r   r   r  r   r   r   r   {  r   zuniform_impl2.<locals>.<lambda>r   r  r   r   r   uniform_impl2q  s     

r'  c                    s@   t | tjtjfr<t |tjtjfr<tdd   fddS d S )Nc                 S   s*   t |}t |}ttj||td||fS rw   r#  )r   rl   rm   r%  r&  r   r   r   r     s      znp_uniform_impl2.<locals>._implc                    s
    | |S r   r   r  r   r   r   r     r   z"np_uniform_impl2.<locals>.<lambda>r   r  r   r   r   np_uniform_impl2~  s     

r(  c                    s    fdd}|S )Nc           	         sT   t | |}|\}} ||}||}|||}t| ||}|||||S r   )r+   Zfsubr[   rW   rX   )	r%   r&   r{   r@   r5   rY   rZ   r^   r   a_preprocessorb_preprocessorr   r   r   rr     s    

zuniform_impl.<locals>.implr   )r   r*  r+  rr   r   r)  r   r$    s    r$  c                 C   s   t | tjtjfr4t |tjtjfr4t|r4dd S t | tjtjfrt |tjtjfrt |tjs~t |tjrt |jtjrdd }|S d S )Nc                 S   s   t j| |S r   r   r  r   r   r   r     r   z"np_uniform_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r!  r  r   r   r   r     s
    
znp_uniform_impl3.<locals>._implr   )rl   rm   r   r   r   r   r   np_uniform_impl3  s*     
 


r,  c                 C   s4   dd }t | tjtjfr0t |tjtjfr0|S d S )Nc                 S   s@   t   }d}||kr&d| }||  } }| ||  t||   S )N      ?r   r   r   r   )rl   rm   ucr   r   r   r     s    
z triangular_impl_2.<locals>._implr   )rl   rm   r   r   r   r   triangular_impl_2  s     
r1  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s`   || kr| S t   }||  ||   }||krFd| }d| }||  } }| ||  t||   S r   r.  )rl   rm   moder/  r0  r   r   r   r     s    
 triangular_impl_3.<locals>._implr   )rl   rm   r2  r   r   r   r   triangular_impl_3  s     
r4  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   sb   || kr| S t j }||  ||   }||krHd| }d| }||  } }| ||  t||   S r   )r   r   r   r   )leftr2  rightr/  r0  r   r   r   r     s    

r3  r   )r5  r2  r6  r   r   r   r   r4    s     
c                 C   sJ   t |rdddS t|tjs8t|tjrFt|jtjrFddd}|S d S )Nc                 S   s   t j| ||S r   )r   r   
triangular)r5  r2  r6  r   r   r   r   r     s   z!triangular_impl.<locals>.<lambda>c                 S   s8   t |}|j}t|jD ]}t j| ||||< q|S r   )r   r   r   r   r   r   r7  )r5  r2  r6  r   r   r   rP   r   r   r   r     s
    
ztriangular_impl.<locals>._impl)N)Nr   )r5  r2  r6  r   r   r   r   r   triangular_impl  s    

r8  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rs   r   r   rt   _gammavariate_implr   alphabetar   r   r   gammavariate_impl  s
     
r=  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r   r   gammashaper   r   r   r     r   z%ol_np_random_gamma1.<locals>.<lambda>r   r@  r   r   r   ol_np_random_gamma1  s    rB  c                    sH   t | tjtjfrDt |tjtjfrDtttjj  fdd}|S d S )Nc                    s
    | |S r   r   )rA  r   rq   r   r   rr     s    z!ol_np_random_gamma2.<locals>.impl)rs   r   r   rt   r   r9  r   r   )rA  r   rr   r   rq   r   ol_np_random_gamma2   s     
rC  c                    s    fdd}|S )Nc                    s  dt d }| dks|dkr&td| dkrt d|  d }| t d }| | }  }d|  k rpdk stqV qVd   }t |d|  | }| t | }	|| | }
|||  |	 }|| d|
  dks|t |
krV|	| S qVn| dkrt d    | S   }t j|  t j }|| }|dkrB|d|   }	nt || |   }	  }|dkr~||	| d  krqn|t |	 krqq|	| S d	S )
z1Gamma distribution.  Taken from CPython.
        r   g      @r   z*gammavariate: alpha and beta must be > 0.0r   g      @gHz>gP?N)r   r   r   r   expe)r;  r<  SG_MAGICCONSTainvbbbcccu1u2r   r   zr   r/  rZ   pr   r   r   r     s@    
"


z!_gammavariate_impl.<locals>._implr   r   r   r   r   r   r9  
  s    7r9  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r>  )rA  r   r   r   r   r   r   H  r   zgamma_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r?  )rA  r   r   r   r   rP   r   r   r   r   L  s
    
zgamma_impl.<locals>._implr   )rA  r   r   r   r   r   r   
gamma_implE  s    rO  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   standard_gamma)rA  r   r   r   r   r   X  r   z%standard_gamma_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   rQ  )rA  r   r   r   rP   r   r   r   r   \  s
    
z"standard_gamma_impl.<locals>._implr   )rA  r   r   r   r   r   standard_gamma_implU  s    rR  c                 C   s2   t | tjtjfr.t |tjtjfr.ttjS d S r   )rs   r   r   rt   _betavariate_implr   gammavariater:  r   r   r   betavariate_imple  s
     
rU  c                    sH   t | tjtjfrDt |tjtjfrDtttjj  fdd}|S d S )Nc                    s
    | |S r   r   r  rq   r   r   rr   q  s    zol_np_random_beta.<locals>.impl)	rs   r   r   rt   r   rS  r   r   r?  )rY   rZ   rr   r   rq   r   ol_np_random_betal  s     
rV  c                    s    fdd}|S )Nc                    s,    | d}|dkrdS || |d  S dS )z0Beta distribution.  Taken from CPython.
        r   r   Nr   )r;  r<  rQ   r?  r   r   r   w  s    
z _betavariate_impl.<locals>._implr   )r?  r   r   rW  r   rS  v  s    
rS  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   r<  )rY   rZ   r   r   r   r   r     r   zbeta_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r<  )rY   rZ   r   r   r   rP   r   r   r   r     s
    
zbeta_impl.<locals>._implr   )rY   rZ   r   r   r   r   r   	beta_impl  s    rX  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   t dt   |  S )z;Exponential distribution.  Taken from CPython.
            r   )r   r   r   )lambdr   r   r   r     s    zexpovariate_impl.<locals>._implrs   r   r   )rY  r   r   r   r   expovariate_impl  s    
r[  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t dtj   |  S r   r   r   r   r   r   r   r   r   r     s    exponential_impl.<locals>._implr   )r   r   r   r   r   exponential_impl  s    r_  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   exponentialr   r   r   r   r   r     r   z"exponential_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r`  r   r   r   r   rP   r   r   r   r     s
    
r^  r   r   r   r   r   r   r   r_    s    c                  C   s   dd } | S )Nc                   S   s   t dtj   S r   r\  r   r   r   r   r     s    r^  r   r   r   r   r   r_    s    c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_exponentialr   r   r   r   r     r   z+standard_exponential_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   rd  r   r   r   r   r     s
    
z(standard_exponential_impl.<locals>._implr   r   r   r   r   standard_exponential_impl  s    
re  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   	lognormalr   r   r   r   r     r   z$np_lognormal_impl0.<locals>.<lambda>r   r   r   r   r   np_lognormal_impl0  s    rh  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   rf  meanr   r   r   r     r   z%np_log_normal_impl1.<locals>.<lambda>r   ri  r   r   r   np_log_normal_impl1  s    rk  c                    sD   t | tjtjfr@t |tjtjfr@tttjj  fddS d S )Nc                    s
    | |S r   r   rj  r   rq   r   r   r     r   z%np_log_normal_impl2.<locals>.<lambda>)	rs   r   r   rt   r   _lognormvariate_implr   r   r   rl  r   rq   r   np_log_normal_impl2  s     
rn  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   rf  )rj  r   r   r   r   r   r     r   z lognormal_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   rg  )rj  r   r   r   r   rP   r   r   r   r     s
    
zlognormal_impl.<locals>._implr   )rj  r   r   r   r   r   r   lognormal_impl  s    ro  c                    s6   t | tjr2t |tjr2tttj  fddS d S )Nc                    s
    | |S r   r   r   rq   r   r   r     r   z%lognormvariate_impl.<locals>.<lambda>)rs   r   r   r   rm  r   gaussr   r   rq   r   lognormvariate_impl  s    rq  c                    s    fddS )Nc                    s   t  | |S r   )r   rD  r   Z_gaussr   r   r      r   z&_lognormvariate_impl.<locals>.<lambda>r   rr  r   rr  r   rm    s    rm  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   dt    }d|d|    S )z)Pareto distribution.  Taken from CPython.r   )r   )r;  r/  r   r   r   r     s    z!paretovariate_impl.<locals>._implrZ  )r;  r   r   r   r   paretovariate_impl  s    rs  c                 C   s   t | tjrdd }|S d S )Nc                 S   s"   dt j  }d|d|    d S )Nr   r8   r   rY   r/  r   r   r   r     s    pareto_impl.<locals>._implrZ  rY   r   r   r   r   pareto_impl  s    rw  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   paretorY   r   r   r   r   r     r   zpareto_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   rx  rY   r   r   r   rP   r   r   r   r   !  s
    
ru  r   rY   r   r   r   r   r   rw    s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s$   dt    }| t| d|   S )z*Weibull distribution.  Taken from CPython.r   )r   r   r   )r;  r<  r/  r   r   r   r   .  s    z"weibullvariate_impl.<locals>._implr   )r;  r<  r   r   r   r   weibullvariate_impl*  s     
r|  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s"   dt j  }t| d|   S r   r   r   r   r   rt  r   r   r   r   :  s    zweibull_impl.<locals>._implr   rv  r   r   r   weibull_impl7  s    r~  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   weibullry  r   r   r   r   E  r   zweibull_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rz  r   r   r   r   I  s
    
zweibull_impl2.<locals>._implr   r{  r   r   r   weibull_impl2B  s    r  c                 C   s&   t | tjr"t |tjr"ttjS d S r   )rs   r   r   _vonmisesvariate_implr   r   kappar   r   r   vonmisesvariate_implR  s    r  c                 C   s(   t | tjr$t |tjr$ttjjS d S r   )rs   r   r   r  r   r   r  r   r   r   r  X  s    c                    s    fdd}|S )Nc                    s   |dkrdt j    S d| }|t d||   }  }t t j| }|||  }  }|d||  k s|d| t | kr6qq6d| }|| d||   }	  }
|
dkr| t |	 dt j  }n| t |	 dt j  }|S )zCircular data distribution.  Taken from CPython.
        Note the algorithm in Python 2.6 and Numpy is different:
        http://bugs.python.org/issue17141
        gư>r   r-  r   )r   pir   cosrD  acos)r   r  sr   rJ  rL  drK  qr   u3thetar   r   r   r   _  s"    &z$_vonmisesvariate_impl.<locals>._implr   rN  r   r   r   r  ^  s    (r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   vonmises)r   r  r   r   r   r   r     r   zvonmises_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )r   r  r   r   r   rP   r   r   r   r     s
    
zvonmises_impl.<locals>._implr   )r   r  r   r   r   r   r   vonmises_impl  s    r  c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ  | dk rt dd|  kr$dks.n t d|dkr:dS |dkrF| S |dk}|rZd| }d| }d}||  }|dkr|d	K }| d	L } ||  }| dksntqn| | }t| |d
t|| d   }d}|dkrFd}	tj }
|}|	|kr|
|kr||r| |	 n|	7 }|d8 }q|
|8 }
|	d7 }	| |	 d | | |	|  }qq|S )z
            Binomial distribution.  Numpy's variant of the BINV algorithm
            is used.
            (Numpy uses BTPE for n*p >= 30, though)
            r   zbinomial(): n <= 0r   r   zbinomial(): p outside of [0, 1]r-  r8   gx0 r:         $@)r   r   minr   r   r   r   )r   rM  Zflippedr  ZnitersqnZnp_prodboundrn   XUZpxr   r   r   r     sF     


 binomial_impl.<locals>._implrs   r   rt   r   r   rM  r   r   r   r   binomial_impl  s     
1r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   binomial)r   rM  r   r   r   r   r     r   zbinomial_impl.<locals>.<lambda>c                 S   s<   t j|t jd}|j}t|jD ]}t j| |||< q |S r  )r   r   intpr   r   r   r   r  )r   rM  r   r   r   rP   r   r   r   r     s
    r  r   )r   rM  r   r   r   r   r   r    s    c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   dt j| d  S Nr   rP  )dfr   r   r   r     s    zchisquare_impl.<locals>._implr   r  r   r   r   r   chisquare_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r   r   	chisquare)r  r   r   r   r   r     r   z!chisquare_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  r  r   r   r   rP   r   r   r   r     s
    
zchisquare_impl2.<locals>._implr   r  r   r   r   r   r   chisquare_impl2  s    r  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s    t j| | t j||   S r   r  )dfnumdfdenr   r   r   r     s    f_impl.<locals>._implr   )r  r  r   r   r   r   f_impl  s     
r  c                 C   sj   t | tjtjfr4t |tjtjfr4t|r4dd S t |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| |S r   )r   r   r   )r  r  r   r   r   r   r     r   zf_impl.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r   )r  r  r   r   r   rP   r   r   r   r     s
    
r  r   )r  r  r   r   r   r   r   r    s     
c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   | dks| dkrt dd|  }| dkrhtd}|  }}tj }||krd||9 }||7 }|d7 }qB|S ttdtj  t| S d S )Nr   r   z geometric(): p outside of (0, 1]gUUUUUU?r8   )r   r  r   r   r   ceilr   )rM  r  r  sumprodr  r   r   r   r     s    

geometric_impl.<locals>._implr   )rM  r   r   r   r   geometric_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	geometricrM  r   r   r   r   r   3  r   z geometric_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   int64r   r   r   r   r  rM  r   r   r   rP   r   r   r   r   7  s
    r  r   rM  r   r   r   r   r   r  0  s    c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s(   dt j  }| |tt|   S r   r}  r   r   r  r   r   r   r   D  s    zgumbel_impl.<locals>._implr   )r   r   r   r   r   r   gumbel_impl@  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   gumbelr   r   r   r   r   N  r   zgumbel_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r   R  s
    
zgumbel_impl3.<locals>._implr   r   r   r   r   gumbel_impl3K  s    r  c                 C   sF   t | tjtjfrBt |tjtjfrBt |tjtjfrBdd }|S d S )Nc                 S   s   t |t |  t | }tt|| }|}t |}|dkrl|dkrl|ttj |||   8 }|d8 }q2t || }| |krt || S |S dS )z'Numpy's algorithm for hypergeometric().r   r   r8   N)r  floatr  r   floorr   r   )ngoodnbadnsampleZd1Zd2YKZr   r   r   r   `  s     
"hypergeometric_impl.<locals>._implr   )r  r  r  r   r   r   r   hypergeometric_impl[  s     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| ||S r   )r   r   hypergeometric)r  r  r  r   r   r   r   r   v  s    z%hypergeometric_impl.<locals>.<lambda>c                 S   s>   t j|t jd}|j}t|jD ]}t j| ||||< q |S r  )r   r   r  r   r   r   r   r  )r  r  r  r   r   r   rP   r   r   r   r   {  s
    r  r   )r  r  r  r   r   r   r   r   r  s  s    c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   laplacer   r   r   r   r     r   zlaplace_impl0.<locals>.<lambda>r   r   r   r   r   laplace_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   zlaplace_impl1.<locals>.<lambda>r   r   r   r   r   laplace_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rs   r   r   rt   laplace_implr   r   r   r   laplace_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   zlaplace_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlaplace_impl3.<locals>._implr   r   r   r   r   laplace_impl3  s    r  c                 C   sF   t j }|dk r(| |t||   S | |td| |   S d S )Nr-  r   r}  r  r   r   r   r    s    
r  c                   C   s   dd S )Nc                   S   s   t jddS r   r   r   logisticr   r   r   r   r     r   z logistic_impl0.<locals>.<lambda>r   r   r   r   r   logistic_impl0  s    r  c                 C   s   t | tjtjfrdd S d S )Nc                 S   s   t j| dS r   r  r   r   r   r   r     r   z logistic_impl1.<locals>.<lambda>r   r   r   r   r   logistic_impl1  s    r  c                 C   s,   t | tjtjfr(t |tjtjfr(tS d S r   )rs   r   r   rt   logistic_implr   r   r   r   logistic_impl2  s
     
r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   r  r   r   r   r   r     r   z logistic_impl3.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
zlogistic_impl3.<locals>._implr   r   r   r   r   logistic_impl3  s    r  c                 C   s$   t j }| |t|d|    S r   r}  r  r   r   r   r    s    
r  c                 C   s   | dks| dkrt dtd|  }tj }|| kr<dS tj }dt||  }||| krtdt|t|  S ||krdS dS q&dS )z"Numpy's algorithm for logseries().r   r   z logseries(): p outside of (0, 1]r8   r:   N)r   r   r   r   r   rD  r  )rM  r   Vr  r  r   r   r   _logseries_impl  s    

r  c                 C   s   t | tjtjfrtS d S r   )rs   r   r   rt   r  )rM  r   r   r   logseries_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   	logseriesr  r   r   r   r     r   z logseries_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  r  r   r   r   r     s
    zlogseries_impl.<locals>._implr   r  r   r   r   r    s    c                 C   s.   t | tjr*t |tjtjfr*dd }|S d S )Nc                 S   sJ   | dkrt d|dk s |dkr(t dtj| d| | }tj|S )Nr   znegative_binomial(): n <= 0r   r   z(negative_binomial(): p outside of [0, 1])r   r   r   r?  poisson)r   rM  r  r   r   r   r     s    z%negative_binomial_impl.<locals>._implr  r  r   r   r   negative_binomial_impl   s     
r  c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   r  r   r   r   r   r     r   zpoisson_impl0.<locals>.<lambda>r   r   r   r   r   poisson_impl0  s    r  c                    s.   t | tjtjfr*tdd   fddS d S )Nc                    s$   t |  fdd}ttj||fS )Nc              	      s  t | |}tj|tdd}|d}|d}|\}||}|d|ttd}	|	|	N t
tttf}
t|jj|
d}||||f}||| || W 5 Q R X || || tjjtj  fdd	}| ||||}||| || || ||S )
Nrk   r   bbcontr   rB   r  Znumba_poisson_ptrsc                    sV   | dk rt d| dkrdS  |  }d}d} }||9 }||krH|S |d7 }q.dS )ag  Numpy's algorithm for poisson() on small *lam*.

                    This method is invoked only if the parameter lambda of the
                    distribution is small ( < 10 ). The algorithm used is
                    described in "Knuth, D. 1969. 'Seminumerical Algorithms.
                    The Art of Computer Programming' vol 2.
                    r   zpoisson(): lambda < 0r   r   r8   Nr   )lamZenlamr  r  r  _expr   r   r   poisson_impl7  s    
zCpoisson_impl1.<locals>._impl.<locals>.codegen.<locals>.poisson_impl)r/   r   r   ri   r   Zfcmp_orderedr   r   rV   r   r   r   r    r?   r!   r$   rK   r   r   r   r   r   rD  r   rG   )r%   r&   r{   r@   r5   Zretptrr  r   r  Zbig_lamr)   r*   rk   r  Zlam_preprocessorr  r   r~     s8    









z-poisson_impl1.<locals>._impl.<locals>.codegen)r   r   r   r  )r   r  r~   r   r  r   r     s    7zpoisson_impl1.<locals>._implc                    s    | S r   r   r  r   r   r   r   S  r   zpoisson_impl1.<locals>.<lambda>r   r  r   r   r   poisson_impl1  s    
;r  c                 C   sj   t | tjtjfr"t|r"dd S t | tjtjfrft |tjsZt |tjrft |jtjrfdd }|S d S )Nc                 S   s   t j| S r   r  )r  r   r   r   r   r   Y  r   zpoisson_impl2.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  )r  r   r   r   rP   r   r   r   r   _  s
    zpoisson_impl2.<locals>._implr   )r  r   r   r   r   r   poisson_impl2V  s    

r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s2   | dkrt dtdttj   d|  S )Nr   zpower(): a <= 0r8   r   )r   r   powrD  r   r   rd  rp   r   r   r   r   k  s
    power_impl.<locals>._implr   rv  r   r   r   
power_implh  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   powerry  r   r   r   r   w  r   zpower_impl.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rz  r   r   r   r   {  s
    
r  r   r{  r   r   r   r  t  s    c                   C   s   dd S )Nc                   S   s   t jdS r   r   r   rayleighr   r   r   r   r     r   z rayleigh_impl0.<locals>.<lambda>r   r   r   r   r   rayleigh_impl0  s    r  c                 C   s"   t | tjtjfrdd }|S d S )Nc              	   S   s2   | dkrt d| tdtdtj    S )Nr   zrayleigh(): scale <= 0r   r   )r   r   r   r   r   r   r]  r   r   r   rr     s    zrayleigh_impl1.<locals>.implr   )r   rr   r   r   r   rayleigh_impl1  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   r  ra  r   r   r   r     r   z rayleigh_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  rb  r   r   r   r     s
    
zrayleigh_impl2.<locals>._implr   rc  r   r   r   rayleigh_impl2  s    r  c                  C   s   dd } | S )Nc                   S   s   t j t j  S r   r   r   r   r   r   r     s    zcauchy_impl.<locals>._implr   r   r   r   r   cauchy_impl  s    r  c                 C   sF   t | rdd S t| tjs6t| tjrBt| jtjrBdd }|S d S )Nc                 S   s
   t j S r   )r   r   standard_cauchyr   r   r   r   r     r   z&standard_cauchy_impl.<locals>.<lambda>c                 S   s2   t | }|j}t|jD ]}t j ||< q|S r   )r   r   r   r   r   r   r  r   r   r   r   r     s
    
z#standard_cauchy_impl.<locals>._implr   r   r   r   r   standard_cauchy_impl  s    r  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s:   t j }t j| d }t| d | t| }|S r  )r   r   r   rQ  r   r   )r  NGr  r   r   r   r     s    
zstandard_t_impl.<locals>._implr   r  r   r   r   standard_t_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   
standard_tr  r   r   r   r     r   z"standard_t_impl2.<locals>.<lambda>c                 S   s4   t |}|j}t|jD ]}t j| ||< q|S r   )r   r   r   r   r   r   r  r  r   r   r   r     s
    
zstandard_t_impl2.<locals>._implr   r  r   r   r   standard_t_impl2  s    r  c                 C   s(   t | tjr$t |tjr$dd }|S d S )Nc                 S   s   | dkrt d|dkr t d| d|  }tj }| | | }| ||td| | ||     }tj }|| | |  kr|S | |  | S d S )Nr   zwald(): mean <= 0zwald(): scale <= 0r      )r   r   r   r   r   r   )rj  r   Zmu_2lr  r  r  r   r   r   r     s    
&
zwald_impl.<locals>._implrZ  )rj  r   r   r   r   r   	wald_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| |S r   )r   r   wald)rj  r   r   r   r   r   r     r   zwald_impl2.<locals>.<lambda>c                 S   s6   t |}|j}t|jD ]}t j| |||< q|S r   )r   r   r   r   r   r   r  )rj  r   r   r   r   rP   r   r   r   r     s
    
zwald_impl2.<locals>._implr   )rj  r   r   r   r   r   r   
wald_impl2  s    r  c                 C   s   t | tjrdd }|S d S )Nc                 S   s   | dkrt d| d }d| }dtj  }tj }tt|d|  }dd|  | }|dkr || |d  |d  || kr |S q d S )Nr   zzipf(): a <= 1r   g      r8   )r   r   r   r  r   r  )rY   Zam1rZ   r  r  r  Tr   r   r   r     s    
(zipf_impl.<locals>._implrZ  rv  r   r   r   	zipf_impl  s    r  c                 C   sF   t |rdd S t|tjs6t|tjrBt|jtjrBdd }|S d S )Nc                 S   s   t j| S r   )r   r   zipfry  r   r   r   r     r   zzipf_impl.<locals>.<lambda>c                 S   s:   t j|t jd}|j}t|jD ]}t j| ||< q |S r  )r   r   r  r   r   r   r   r  rz  r   r   r   r     s
    r  r   r{  r   r   r   r    s    c                    s\   t | tjstd|dkr&tjj n|dkr4tj | jdkrL fdd}n fdd}|S )Nz1The argument to shuffle() should be a buffer typer   r   r8   c                    sJ   | j d d }|dkrF |d }| | | |  | |< | |< |d8 }qd S r7   r@  r   ijrandr   r   rr   +  s
    zdo_shuffle_impl.<locals>.implc                    sV   | j d d }|dkrR |d }t| | t| |  | |< | |< |d8 }qd S r7   )rA  r   copyr  r  r   r   rr   2  s
    &)	rs   r   Bufferr   r   r   r  r   ndim)r   rngrr   r   r  r   do_shuffle_impl   s    

r  c                 C   s
   t | dS r   r  r   r   r   r   shuffle_impl<  s    r  c                 C   s
   t | dS rw   r  r   r   r   r   r  A  s    c                 C   s4   t | tjrdd }nt | tjr,dd }nd }|S )Nc                 S   s   t | }t j| |S r   )r   aranger   shuffle)r   rQ   r   r   r   permutation_implI  s    
z*permutation_impl.<locals>.permutation_implc                 S   s   |   }tj| |S r   )r  r   r   r  )r   Zarr_copyr   r   r   r  N  s    )rs   r   rt   Array)r   r  r   r   r   r  F  s    

r  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   	rand_impl^  s    zrand.<locals>.rand_implc                  W   s   t j| S r   r   r   r   r   r   r
  c  s    len)r   r
  r   r   r   r  Z  s    
r  c                  G   s"   t | dkrdd }ndd }|S )Nr   c                  W   s
   t j S r   r   r   r   r   r   
randn_implm  s    zrandn.<locals>.randn_implc                  W   s   t j| S r   r   r   r   r   r   r  r  s    r  )r   r  r   r   r   randni  s    
r  Tc                    s   t | tjrF| jdkst| j tdd tdd }tdd nFt | tjr~tj	 tdd td	d }td
d nt
d| f |d tjfkrdfdd	}nd fdd	}|S )Nr8   c                 S   s   t | S r   r  rp   r   r   r   get_source_size  s    zchoice.<locals>.get_source_sizec                 S   s   |   S r   )r  rp   r   r   r   copy_source  s    zchoice.<locals>.copy_sourcec                 S   s   | | S r   r   rY   Za_ir   r   r   getitem  s    zchoice.<locals>.getitemc                 S   s   | S r   r   rp   r   r   r   r    s    c                 S   s
   t | S r   )r   r  rp   r   r   r   r    s    c                 S   s   |S r   r   r  r   r   r   r    s    z@np.random.choice() first argument should be int or array, got %sTc                    s     | }t jd|}| |S )zs
            choice() implementation returning a single sample
            (note *replace* is ignored)
            r   r  )rY   r   replacer   r  )r  r  r   r   choice_impl  s    zchoice.<locals>.choice_implc           	         s   | }|rPt | }|j}tt|D ] }t jd|}| |||< q*|S t | }|j|krntdt j	| }|j}tt|D ]}|| ||< q|S dS )zO
            choice() implementation returning an array of samples
            r   z@Cannot take a larger sample than population when 'replace=False'N)
r   r   r   r   r  r   r  r   r   permutation)	rY   r   r  r   r   flr  r  Z
permuted_ar   r  r  r   r   r    s     
)NT)NT)rs   r   r	  r  r   r   r   rt   r   r  r   rz   )rY   r   r  r  r  r   r  r   choice{  s0    




r  c                    s   t j tdd t| tjs,td| f t|tjtjfsLtd|f |d tj	fkrld
 fdd	}nJt|tjrd fdd	}n,t|tj
rd fdd	}ntd	|f |S )Nc                 S   s   |j }|j}t|}td||D ]z}d}| }td|d D ]F}	||	 }
tj||
|  }|||	 < ||8 }|dkrx q||
8 }q:|dkr |||| d < q d S )Nr   r   r8   )r   r   r  r   r   r   r  )r   pvalsr   r  szplenr  Zp_sumZn_experimentsr  Zp_jZn_jr   r   r   multinomial_inner  s    
z&multinomial.<locals>.multinomial_innerz7np.random.multinomial(): n should be an integer, got %szEnp.random.multinomial(): pvals should be an array or sequence, got %sc                    s    t t| }| || |S )z5
            multinomial(..., size=None)
            r   Zzerosr  r   r  r   r   r   r  r   r   multinomial_impl  s    z%multinomial.<locals>.multinomial_implc                    s$   t |t|f }| || |S )z4
            multinomial(..., size=int)
            r  r  r  r   r   r     s    c                    s&   t |t|f  }| || |S )z6
            multinomial(..., size=tuple)
            r  r  r  r   r   r     s    zDnp.random.multinomial(): size should be int or tuple or None, got %s)N)N)N)r   r  r   rs   r   rt   r   Sequencer	  rz   Z	BaseTuple)r   r  r   r   r   r  r   multinomial  s*    
	r"  c                 C   s"   t | tjtjfrdd }|S d S )Nc                 S   s   t t| }t| | |S r   r   r   r  dirichlet_arr)r;  r   r   r   r   dirichlet_impl&  s    
!dirichlet.<locals>.dirichlet_impl)rs   r   r!  r	  )r;  r%  r   r   r   	dirichlet#  s    r'  c                 C   s   t | tjtjfs td| f |d tjfkr:ddd}nJt |tjrRddd}n2t |tjrxt |jtjrxd	dd}ntd| |S )
NzCnp.random.dirichlet(): alpha should be an array or sequence, got %sc                 S   s   t t| }t| | |S r   r#  r;  r   r   r   r   r   r%  7  s    
r&  c                 S   s    t |t| f}t| | |S )z2
            dirichlet(..., size=int)
            r#  r(  r   r   r   r%  >  s    
c                 S   s"   t |t| f }t| | |S )z4
            dirichlet(..., size=tuple)
            r#  r(  r   r   r   r%  H  s    
zJnp.random.dirichlet(): size should be int or tuple of ints or None, got %s)N)N)N)	rs   r   r!  r	  r   rz   rt   r   r   )r;  r   r%  r   r   r   r'  -  s(    	c           
      C   s   t | D ]}|dkrtdqt| }|j}|j}td||D ]j}d}t| D ]2\}}	tj	|	d||| < ||||  
 7 }qNt| D ]\}}	|||   |  < qq>d S )Nr   zdirichlet: alpha must be > 0.0r8   )iterr   r  r   r   r   	enumerater   r   r?  item)
r;  r   Za_valZa_lenr   r   r  Znormr   r   r   r   r   r$  Y  s    
r$  c                 C   s4   t | tjtjfr0t |tjtjfr0dd }|S d S )Nc                 S   s   t | | t| |S r   #validate_noncentral_chisquare_inputnoncentral_chisquare_singler  noncr   r   r   noncentral_chisquare_implw  s    
7noncentral_chisquare.<locals>.noncentral_chisquare_implr   )r  r0  r1  r   r   r   noncentral_chisquares  s     
r3  c                 C   s`   |d t jfkrddd}|S t|t jsBt|t jrPt|jt jrPddd}|S td| d S )Nc                 S   s   t | | t| |S r   r,  )r  r0  r   r   r   r   r1    s    
r2  c                 S   s<   t | | t|}|j}t|jD ]}t| |||< q$|S r   )r-  r   r   r   r   r   r.  )r  r0  r   r   r   rP   r   r   r   r1    s    

zUnp.random.noncentral_chisquare(): size should be int or tuple of ints or None, got %s)N)N)r   rz   rs   rt   r   r   r   )r  r0  r   r1  r   r   r   r3  ~  s    

c                 C   sp   t |rt jS d| k rHt j| d }t j t | }|||  S t j|d }t j| d|  S d S )Nr8   r   r:   )r   isnannanr   r  r   r   r  )r  r0  Zchi2r   r  r   r   r   r.    s    
r.  c                 C   s$   | dkrt d|dk r t dd S )Nr   zdf <= 0znonc < 0r  r/  r   r   r   r-    s    r-  )N)N)NT)N)N)N)__doc__r   r   numpyr   Zllvmliter   Znumba.core.cgutilsr   Znumba.core.extendingr   r   r   Znumba.core.imputilsr   r   r	   Znumba.core.typingr   Z
numba.corer   r   Znumba.npr   Znumba.core.errorsr   registrylowerr  r   ri   r   r   rV   r  r   rI   ZLiteralStructType	ArrayTypeZrnd_state_tZPointerTyper   r+   r.   r/   r0   r6   r9   r;   r=   rA   rR   r[   ro   ry   rv   ru   r   Zrandom_samplesampleZranfr   r   rp  normalvariater   r   r   r   r   r   r   r   r   r   r   getrandbitsr   r   r   r  r  r  r  r  r  r  r  r  r!  r"  r'  r(  r$  r,  r7  r1  r4  r8  rT  r=  rQ  r?  rB  rC  r9  rO  rR  betavariaterU  r<  rV  rS  rX  expovariater[  r`  r_  rd  re  rg  rh  rk  rn  ro  lognormvariaterq  rm  paretovariaters  rx  rw  weibullvariater|  r  r~  r  vonmisesvariater  r  r  r  r  r  r  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  Znegative_binomialr  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r"  r'  r$  r3  r.  r-  r   r   r   r   <module>   s,  



1























(
F


























	;






	


































,



7

















































A





































V
P
	
+


