U
    _{f]                     @  s  U d Z ddlmZ ddlZddlmZmZmZmZm	Z	m
Z
mZmZmZmZ ddlZddlmZ ddlmZ ddlmZmZmZmZmZmZmZ ddlmZ dd	lm Z! dd
l"m#Z# ddl$m%Z%m&Z& ddl'm(Z( ddl)m*Z*m+Z+m,Z,m-Z-m.Z. ddl/m0Z0m1Z1m2Z2 ddl3m4Z4m5Z5 ddl6m7Z7m8Z8m9Z9 ddl:m;Z; ddl<m=Z= ddl>m?Z? ddl@mAZAmBZB erddlmCZCmDZDmEZEmFZF ddlGmHZHmIZImJZJ i ZKdeLd< dddddZMedddZNG dd de;ZOG d d! d!ZPG d"d# d#ee ZQG d$d de=ZRdS )%z.
Base and utility classes for pandas objects.
    )annotationsN)
TYPE_CHECKINGAnyGenericHashableIteratorLiteralTypeVarcastfinaloverload)using_copy_on_write)lib)AxisAxisIntDtypeObj
IndexLabelNDFrameTShapenpt)PYPY)functionAbstractMethodError)cache_readonlydoc)can_hold_element)is_categorical_dtypeis_dict_likeis_extension_array_dtypeis_object_dtype	is_scalar)ABCDataFrameABCIndex	ABCSeries)isnaremove_na_arraylike)
algorithmsnanopsops)DirNamesMixin)OpsMixin)ExtensionArray)ensure_wrapped_if_datetimelikeextract_array)DropKeepNumpySorterNumpyValueArrayLikeScalarLike_co)CategoricalIndexSerieszdict[str, str]_shared_docsIndexOpsMixin )klassZinplaceunique
duplicated_T)boundc                      s\   e Zd ZU dZded< edd Zdddd	ZddddddZdd fddZ	  Z
S )PandasObjectz/
    Baseclass for various pandas objects.
    zdict[str, Any]_cachec                 C  s   t | S )zJ
        Class constructor (for this class it's just `__class__`.
        )typeself rC   O/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/pandas/core/base.py_constructorl   s    zPandasObject._constructorstrreturnc                 C  s
   t | S )zI
        Return a string representation for a particular object.
        )object__repr__rA   rC   rC   rD   rJ   s   s    zPandasObject.__repr__Nz
str | NoneNonekeyrH   c                 C  s4   t | dsdS |dkr"| j  n| j|d dS )zV
        Reset cached properties. If ``key`` is passed, only clears that key.
        r?   N)hasattrr?   clearpop)rB   rM   rC   rC   rD   _reset_cachez   s
    
zPandasObject._reset_cacheintc                   s<   t | dd}|r2|dd}tt|r(|n| S t  S )zx
        Generates the total memory usage for an object that returns
        either a value or Series of values
        memory_usageNTdeep)getattrrR   r!   sumsuper
__sizeof__)rB   rS   Zmem	__class__rC   rD   rY      s
    
zPandasObject.__sizeof__)N)__name__
__module____qualname____doc____annotations__propertyrE   rJ   rQ   rY   __classcell__rC   rC   rZ   rD   r>   d   s   

r>   c                   @  s.   e Zd ZdZddddZddddd	Zd
S )NoNewAttributesMixina  
    Mixin which prevents adding new attributes.

    Prevents additional attributes via xxx.attribute = "something" after a
    call to `self.__freeze()`. Mainly used to prevent the user from using
    wrong attributes on an accessor (`Series.cat/.str/.dt`).

    If you really want to add a new attribute at a later time, you need to use
    `object.__setattr__(self, key, value)`.
    rK   rG   c                 C  s   t | dd dS )z9
        Prevents setting additional attributes.
        __frozenTN)rI   __setattr__rA   rC   rC   rD   _freeze   s    zNoNewAttributesMixin._freezerF   rL   c                 C  sT   t | ddrB|dksB|t| jksBt | |d d k	sBtd| dt| || d S )Nrd   Fr?   z"You cannot add any new attribute '')rV   r@   __dict__AttributeErrorrI   re   )rB   rM   valuerC   rC   rD   re      s    z NoNewAttributesMixin.__setattr__N)r\   r]   r^   r_   rf   re   rC   rC   rC   rD   rc      s   rc   c                   @  s   e Zd ZU dZded< dZded< ded< d	d
gZeeZe	e
dd Zedd Ze	eddddZe	edd Zdd ZdddddZdd ZeZdS )SelectionMixinz
    mixin implementing the selection & aggregation interface on a group-like
    object sub-classes need to define: obj, exclusions
    r   objNzIndexLabel | None
_selectionzfrozenset[Hashable]
exclusionsr?   __setstate__c                 C  s&   t | jtttttjfs | jgS | jS N)
isinstancerm   listtupler$   r#   npndarrayrA   rC   rC   rD   _selection_list   s     zSelectionMixin._selection_listc                 C  s,   | j d kst| jtr| jS | j| j  S d S rp   )rm   rq   rl   r$   rA   rC   rC   rD   _selected_obj   s    zSelectionMixin._selected_objrR   rG   c                 C  s   | j jS rp   )rw   ndimrA   rC   rC   rD   rx      s    zSelectionMixin.ndimc                 C  sV   t | jtr| jS | jd k	r*| j| jS t| jdkrL| jj| jdddS | jS d S )Nr      T)axisZ
only_slice)	rq   rl   r$   rm   Z_getitem_nocopyrv   lenrn   Z
_drop_axisrA   rC   rC   rD   _obj_with_exclusions   s    
z#SelectionMixin._obj_with_exclusionsc                 C  s   | j d k	rtd| j  dt|tttttjfrt	| j
j|t	t|krtt|| j
j}tdt|dd  | jt|ddS || j
krtd| | j
| j}| j||dS d S )	Nz
Column(s) z already selectedzColumns not found: ry      rx   zColumn not found: )rm   
IndexErrorrq   rr   rs   r$   r#   rt   ru   r{   rl   columnsintersectionset
differenceKeyErrorrF   _gotitemrx   )rB   rM   bad_keysrx   rC   rC   rD   __getitem__   s    

zSelectionMixin.__getitem__r   c                 C  s   t | dS )a  
        sub-classes to define
        return a sliced object

        Parameters
        ----------
        key : str / list of selections
        ndim : {1, 2}
            requested ndim of result
        subset : object, default None
            subset to act on
        Nr   )rB   rM   rx   ZsubsetrC   rC   rD   r      s    zSelectionMixin._gotitemc                 O  s   t | d S rp   r   )rB   funcargskwargsrC   rC   rD   	aggregate  s    zSelectionMixin.aggregate)N)r\   r]   r^   r_   r`   rm   Z_internal_namesr   Z_internal_names_setr   ra   rv   r   rw   rx   r|   r   r   r   ZaggrC   rC   rC   rD   rk      s*   

rk   c                   @  s8  e Zd ZU dZdZedgZded< edddd	Z	ed
dddZ
edddddZeeddZeddddZddddZeddddZedd ZeddddZeddd d!Zed"dd#d$Zed%d&ejfd'd(d)d*d+d,d-Zeed(dd.d/Zdd1d(d2d3d4Zed5d6d7d8dd1d(dd9d:d;Zdd1d(d2d<d=Zeed6d5d>d8dd1d(dd9d?d@ZdAdB ZeZdCddDdEZ e!d(ddFdGZ"dHddIdJZ#dKd0d%d%dLdMdNd(dOdPdQZ$eddRdSZ%edd(d(d(d(dTdUdVdWZ&dXdY Z'edd(ddZd[d\Z(ed(dd]d^Z)ed(dd_d`Z*ed(ddadbZ+edd(ddcdddeZ,ee-j.dfdfdfe/0dgdhdd(d(didjdkdlZ.dme1dn< e2ddpdqdrdsdtdudvZ3e2ddwdqdrdxdtdydvZ3ee1dn dzd{dd}dqdrd~dtddvZ3ddddddZ4edddHdddZ5dd Z6dd Z7d%S )r7   zS
    Common ops mixin to support a unified interface / docs for Series / Index
    i  tolistzfrozenset[str]_hidden_attrsr   rG   c                 C  s   t | d S rp   r   rA   rC   rC   rD   dtype  s    zIndexOpsMixin.dtypezExtensionArray | np.ndarrayc                 C  s   t | d S rp   r   rA   rC   rC   rD   _values  s    zIndexOpsMixin._valuesr<   )rB   rH   c                 O  s   t || | S )zw
        Return the transpose, which is by definition self.

        Returns
        -------
        %(klass)s
        )nvZvalidate_transpose)rB   r   r   rC   rC   rD   	transpose"  s    	zIndexOpsMixin.transposezD
        Return the transpose, which is by definition self.
        )r   r   c                 C  s   | j jS )z
        Return a tuple of the shape of the underlying data.

        Examples
        --------
        >>> s = pd.Series([1, 2, 3])
        >>> s.shape
        (3,)
        )r   shaperA   rC   rC   rD   r   5  s    zIndexOpsMixin.shaperR   c                 C  s   t | d S rp   r   rA   rC   rC   rD   __len__B  s    zIndexOpsMixin.__len__z
Literal[1]c                 C  s   dS )zO
        Number of dimensions of the underlying data, by definition 1.
        ry   rC   rA   rC   rC   rD   rx   F  s    zIndexOpsMixin.ndimc                 C  s$   t | dkrtt| S tddS )a  
        Return the first element of the underlying data as a Python scalar.

        Returns
        -------
        scalar
            The first element of %(klass)s.

        Raises
        ------
        ValueError
            If the data is not length-1.
        ry   z6can only convert an array of size 1 to a Python scalarN)r{   nextiter
ValueErrorrA   rC   rC   rD   itemM  s    zIndexOpsMixin.itemc                 C  s   | j jS )zD
        Return the number of bytes in the underlying data.
        )r   nbytesrA   rC   rC   rD   r   `  s    zIndexOpsMixin.nbytesc                 C  s
   t | jS )zG
        Return the number of elements in the underlying data.
        )r{   r   rA   rC   rC   rD   sizeg  s    zIndexOpsMixin.sizer,   c                 C  s   t | dS )aM  
        The ExtensionArray of the data backing this Series or Index.

        Returns
        -------
        ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        string             StringArray
        boolean            BooleanArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------
        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        ['a', 'b', 'a']
        Categories (2, object): ['a', 'b']
        Nr   rA   rC   rC   rD   arrayn  s    ?zIndexOpsMixin.arrayNFznpt.DTypeLike | NoneboolrI   z
np.ndarray)r   copyna_valuerH   c                 K  s   t | jr$| jj|f||d|S |rHt| d }td| d|tjk	r| j	}t
||srtj||d}n| }||t|  < n| j	}tj||d}|r|tjks|st rt| j	dd |dd rt r|s| }d|j_n| }|S )	a  
        A NumPy ndarray representing the values in this Series or Index.

        Parameters
        ----------
        dtype : str or numpy.dtype, optional
            The dtype to pass to :meth:`numpy.asarray`.
        copy : bool, default False
            Whether to ensure that the returned value is not a view on
            another array. Note that ``copy=False`` does not *ensure* that
            ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
            a copy is made, even if not strictly necessary.
        na_value : Any, optional
            The value to use for missing values. The default value depends
            on `dtype` and the type of the array.
        **kwargs
            Additional keywords passed through to the ``to_numpy`` method
            of the underlying array (for extension arrays).

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        Series.array : Get the actual data stored within.
        Index.array : Get the actual data stored within.
        DataFrame.to_numpy : Similar method for DataFrame.

        Notes
        -----
        The returned array will be the same up to equality (values equal
        in `self` will be equal in the returned array; likewise for values
        that are not equal). When `self` contains an ExtensionArray, the
        dtype may be different. For example, for a category-dtype Series,
        ``to_numpy()`` will return a NumPy array and the categorical dtype
        will be lost.

        For NumPy dtypes, this will be a reference to the actual data stored
        in this Series or Index (assuming ``copy=False``). Modifying the result
        in place will modify the data stored in the Series or Index (not that
        we recommend doing that).

        For extension types, ``to_numpy()`` *may* require copying data and
        coercing the result to a NumPy type (possibly object), which may be
        expensive. When you need a no-copy reference to the underlying data,
        :attr:`Series.array` should be used instead.

        This table lays out the different dtypes and default return types of
        ``to_numpy()`` for various dtypes within pandas.

        ================== ================================
        dtype              array type
        ================== ================================
        category[T]        ndarray[T] (same dtype as input)
        period             ndarray[object] (Periods)
        interval           ndarray[object] (Intervals)
        IntegerNA          ndarray[object]
        datetime64[ns]     datetime64[ns]
        datetime64[ns, tz] ndarray[object] (Timestamps)
        ================== ================================

        Examples
        --------
        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.to_numpy()
        array(['a', 'b', 'a'], dtype=object)

        Specify the `dtype` to control how datetime-aware data is represented.
        Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp`
        objects, each with the correct ``tz``.

        >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
        >>> ser.to_numpy(dtype=object)
        array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
               Timestamp('2000-01-02 00:00:00+0100', tz='CET')],
              dtype=object)

        Or ``dtype='datetime64[ns]'`` to return an ndarray of native
        datetime64 values. The values are converted to UTC and the timezone
        info is dropped.

        >>> ser.to_numpy(dtype="datetime64[ns]")
        ... # doctest: +ELLIPSIS
        array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'],
              dtype='datetime64[ns]')
        )r   r   r   z/to_numpy() got an unexpected keyword argument 'rg   r   Nr~   F)r   r   r   to_numpyrr   keys	TypeErrorr   
no_defaultr   r   rt   Zasarrayr   Z
asanyarrayr%   r   Zshares_memoryviewflagsZ	writeable)rB   r   r   r   r   r   valuesresultrC   rC   rD   r     s4    _





zIndexOpsMixin.to_numpyc                 C  s   | j  S rp   )r   rA   rC   rC   rD   empty3  s    zIndexOpsMixin.emptyTzAxisInt | None)rz   skipnac                 O  s&   t | t || tj| j|dS )a  
        Return the maximum value of the Index.

        Parameters
        ----------
        axis : int, optional
            For compatibility with NumPy. Only 0 or None are allowed.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        r   )r   validate_minmax_axisZvalidate_maxr(   Znanmaxr   rB   rz   r   r   r   rC   rC   rD   max8  s    (
zIndexOpsMixin.maxr   minlargest)opZopposerj   )rz   r   rH   c                 O  sX   | j }t| t|||}t|trF|s<|  r<dS | S nt	j
||dS dS )ab  
        Return int position of the {value} value in the Series.

        If the {op}imum is achieved in multiple locations,
        the first row position is returned.

        Parameters
        ----------
        axis : {{None}}
            Unused. Parameter needed for compatibility with DataFrame.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        int
            Row position of the {op}imum value.

        See Also
        --------
        Series.arg{op} : Return position of the {op}imum value.
        Series.arg{oppose} : Return position of the {oppose}imum value.
        numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
        Series.idxmax : Return index label of the maximum values.
        Series.idxmin : Return index label of the minimum values.

        Examples
        --------
        Consider dataset containing cereal calories

        >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
        ...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
        >>> s
        Corn Flakes              100.0
        Almond Delight           110.0
        Cinnamon Toast Crunch    120.0
        Cocoa Puff               110.0
        dtype: float64

        >>> s.argmax()
        2
        >>> s.argmin()
        0

        The maximum cereal calories is the third element and
        the minimum cereal calories is the first element,
        since series is zero-indexed.
        r}   r   N)r   r   r   Zvalidate_argmax_with_skipnarq   r,   r%   anyargmaxr(   Z	nanargmaxrB   rz   r   r   r   ZdelegaterC   rC   rD   r   d  s    6


 zIndexOpsMixin.argmaxc                 O  s&   t | t || tj| j|dS )a  
        Return the minimum value of the Index.

        Parameters
        ----------
        axis : {None}
            Dummy argument for consistency with Series.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        scalar
            Minimum value.

        See Also
        --------
        Index.max : Return the maximum value of the object.
        Series.min : Return the minimum value in a Series.
        DataFrame.min : Return the minimum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.min()
        1

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.min()
        'a'

        For a MultiIndex, the minimum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.min()
        ('a', 1)
        r   )r   r   Zvalidate_minr(   Znanminr   r   rC   rC   rD   r     s    (
zIndexOpsMixin.minsmallestc                 O  sX   | j }t| t|||}t|trF|s<|  r<dS | S nt	j
||dS d S )Nr}   r   )r   r   r   Zvalidate_argmin_with_skipnarq   r,   r%   r   argminr(   Z	nanargminr   rC   rC   rD   r     s    


 zIndexOpsMixin.argminc                 C  s
   | j  S )a  
        Return a list of the values.

        These are each a scalar type, which is a Python scalar
        (for str, int, float) or a pandas scalar
        (for Timestamp/Timedelta/Interval/Period)

        Returns
        -------
        list

        See Also
        --------
        numpy.ndarray.tolist : Return the array as an a.ndim-levels deep
            nested list of Python scalars.
        )r   r   rA   rC   rC   rD   r     s    zIndexOpsMixin.tolistr   c                 C  s2   t | jtjst| jS t| jjt| jjS dS )a  
        Return an iterator of the values.

        These are each a scalar type, which is a Python scalar
        (for str, int, float) or a pandas scalar
        (for Timestamp/Timedelta/Interval/Period)

        Returns
        -------
        iterator
        N)	rq   r   rt   ru   r   mapr   ranger   rA   rC   rC   rD   __iter__  s    
zIndexOpsMixin.__iter__c                 C  s   t t|  S )z
        Return True if there are any NaNs.

        Enables various performance speedups.

        Returns
        -------
        bool
        )r   r%   r   rA   rC   rC   rD   hasnans  s    zIndexOpsMixin.hasnansznpt.NDArray[np.bool_]c                 C  s
   t | jS rp   )r%   r   rA   rC   rC   rD   r%   !  s    zIndexOpsMixin.isnar   )rz   r   numeric_onlyfilter_typerF   r   )namerz   r   c          	      K  s>   t | |d}|dkr,tt| j d| |f d|i|S )zA
        Perform the reduction type operation if we can.
        Nz cannot perform the operation r   )rV   r   r@   r\   )	rB   r   r   rz   r   r   r   kwdsr   rC   rC   rD   _reduce$  s    zIndexOpsMixin._reducec           
        sj  t |r^t|tr.t|dr.|  fdd}n0ddlm} t|dkrV||tjd}n||}t|t	r|dkrd| d	}t
||d
kr||j  }t| jrtd| j}||S | j}|j|}t|j|}|S t| jrt| jdr| j}|dk	rtdd }	nF| jt}|d
kr6dd }	n&|dkrHtj}	nd| d	}t
||	||}|S )a  
        An internal function that maps values using the input
        correspondence (which can be a dict, Series, or function).

        Parameters
        ----------
        mapper : function, dict, or Series
            The input correspondence object
        na_action : {None, 'ignore'}
            If 'ignore', propagate NA values, without passing them to the
            mapping function

        Returns
        -------
        Union[Index, MultiIndex], inferred
            The output of the mapping function applied to the index.
            If the function returns a tuple with more than one element
            a MultiIndex will be returned.
        __missing__c                   s"    t | trt| rtjn|  S rp   )rq   floatrt   isnannan)xZdict_with_defaultrC   rD   <lambda>V  s   z+IndexOpsMixin._map_values.<locals>.<lambda>r   )r5   r   )Nignorez+na_action must either be 'ignore' or None, z was passedr   r3   r   Nc                 S  s
   |  |S rp   )r   r   frC   rC   rD   r         c                 S  s   t | |t| tjS rp   )r   Zmap_infer_maskr%   r   rt   Zuint8r   rC   rC   rD   r     s     )r   rq   dictrN   pandasr5   r{   rt   Zfloat64r$   r   indexZnotnar   r   r
   r   r   Zget_indexerr'   Ztake_ndr   NotImplementedErrorastyperI   r   Z	map_infer)
rB   ZmapperZ	na_actionr5   msgcatr   Zindexer
new_valuesZmap_frC   r   rD   _map_values9  sJ    










zIndexOpsMixin._map_valuesr5   )	normalizesort	ascendingdropnarH   c                 C  s   t j| |||||dS )a	  
        Return a Series containing counts of unique values.

        The resulting object will be in descending order so that the
        first element is the most frequently-occurring element.
        Excludes NA values by default.

        Parameters
        ----------
        normalize : bool, default False
            If True then the object returned will contain the relative
            frequencies of the unique values.
        sort : bool, default True
            Sort by frequencies.
        ascending : bool, default False
            Sort in ascending order.
        bins : int, optional
            Rather than count values, group them into half-open bins,
            a convenience for ``pd.cut``, only works with numeric data.
        dropna : bool, default True
            Don't include counts of NaN.

        Returns
        -------
        Series

        See Also
        --------
        Series.count: Number of non-NA elements in a Series.
        DataFrame.count: Number of non-NA elements in a DataFrame.
        DataFrame.value_counts: Equivalent method on DataFrames.

        Examples
        --------
        >>> index = pd.Index([3, 1, 2, 3, 4, np.nan])
        >>> index.value_counts()
        3.0    2
        1.0    1
        2.0    1
        4.0    1
        Name: count, dtype: int64

        With `normalize` set to `True`, returns the relative frequency by
        dividing all values by the sum of values.

        >>> s = pd.Series([3, 1, 2, 3, 4, np.nan])
        >>> s.value_counts(normalize=True)
        3.0    0.4
        1.0    0.2
        2.0    0.2
        4.0    0.2
        Name: proportion, dtype: float64

        **bins**

        Bins can be useful for going from a continuous variable to a
        categorical variable; instead of counting unique
        apparitions of values, divide the index in the specified
        number of half-open bins.

        >>> s.value_counts(bins=3)
        (0.996, 2.0]    2
        (2.0, 3.0]      2
        (3.0, 4.0]      1
        Name: count, dtype: int64

        **dropna**

        With `dropna` set to `False` we can also see NaN index values.

        >>> s.value_counts(dropna=False)
        3.0    2
        1.0    1
        2.0    1
        4.0    1
        NaN    1
        Name: count, dtype: int64
        )r   r   r   binsr   )r'   value_counts)rB   r   r   r   r   r   rC   rC   rD   r     s    WzIndexOpsMixin.value_countsc                 C  s*   | j }t|tjs| }n
t|}|S rp   )r   rq   rt   ru   r:   r'   Zunique1d)rB   r   r   rC   rC   rD   r:      s
    

zIndexOpsMixin.unique)r   rH   c                 C  s   |   }|rt|}t|S )a  
        Return number of unique elements in the object.

        Excludes NA values by default.

        Parameters
        ----------
        dropna : bool, default True
            Don't include NaN in the count.

        Returns
        -------
        int

        See Also
        --------
        DataFrame.nunique: Method nunique for DataFrame.
        Series.count: Count non-NA/null observations in the Series.

        Examples
        --------
        >>> s = pd.Series([1, 3, 5, 7, 7])
        >>> s
        0    1
        1    3
        2    5
        3    7
        4    7
        dtype: int64

        >>> s.nunique()
        4
        )r:   r&   r{   )rB   r   ZuniqsrC   rC   rD   nunique	  s    #zIndexOpsMixin.nuniquec                 C  s   | j ddt| kS )zr
        Return boolean if values in the object are unique.

        Returns
        -------
        bool
        F)r   )r   r{   rA   rC   rC   rD   	is_unique1  s    	zIndexOpsMixin.is_uniquec                 C  s   ddl m} || jS )z
        Return boolean if values in the object are monotonically increasing.

        Returns
        -------
        bool
        r   r4   )r   r4   is_monotonic_increasingrB   r4   rC   rC   rD   r   <  s    	z%IndexOpsMixin.is_monotonic_increasingc                 C  s   ddl m} || jS )z
        Return boolean if values in the object are monotonically decreasing.

        Returns
        -------
        bool
        r   r   )r   r4   is_monotonic_decreasingr   rC   rC   rD   r   I  s    	z%IndexOpsMixin.is_monotonic_decreasing)rU   rH   c                 C  sR   t | jdr| jj|dS | jj}|rNt| rNtsNttj| j	}|t
|7 }|S )aN  
        Memory usage of the values.

        Parameters
        ----------
        deep : bool, default False
            Introspect the data deeply, interrogate
            `object` dtypes for system-level memory consumption.

        Returns
        -------
        bytes used

        See Also
        --------
        numpy.ndarray.nbytes : Total bytes consumed by the elements of the
            array.

        Notes
        -----
        Memory usage does not include memory consumed by elements that
        are not components of the array if deep=False or if used on PyPy
        rS   rT   )rN   r   rS   r   r    r   r
   rt   ru   r   r   Zmemory_usage_of_objects)rB   rU   vr   rC   rC   rD   _memory_usageV  s    zIndexOpsMixin._memory_usager8   z            sort : bool, default False
                Sort `uniques` and shuffle `codes` to maintain the
                relationship.
            )r   orderZ	size_hintr   z"tuple[npt.NDArray[np.intp], Index])r   use_na_sentinelrH   c                 C  s`   t j| j||d\}}|jtjkr.|tj}t| t	rD| 
|}nddlm} ||}||fS )N)r   r   r   r   )r'   	factorizer   r   rt   Zfloat16r   Zfloat32rq   r#   rE   r   r4   )rB   r   r   codesZuniquesr4   rC   rC   rD   r   z  s      

zIndexOpsMixin.factorizea  
        Find indices where elements should be inserted to maintain order.

        Find the indices into a sorted {klass} `self` such that, if the
        corresponding elements in `value` were inserted before the indices,
        the order of `self` would be preserved.

        .. note::

            The {klass} *must* be monotonically sorted, otherwise
            wrong locations will likely be returned. Pandas does *not*
            check this for you.

        Parameters
        ----------
        value : array-like or scalar
            Values to insert into `self`.
        side : {{'left', 'right'}}, optional
            If 'left', the index of the first suitable location found is given.
            If 'right', return the last such index.  If there is no suitable
            index, return either 0 or N (where N is the length of `self`).
        sorter : 1-D array-like, optional
            Optional array of integer indices that sort `self` into ascending
            order. They are typically the result of ``np.argsort``.

        Returns
        -------
        int or array of int
            A scalar or array of insertion points with the
            same shape as `value`.

        See Also
        --------
        sort_values : Sort by the values along either axis.
        numpy.searchsorted : Similar method from NumPy.

        Notes
        -----
        Binary search is used to find the required insertion points.

        Examples
        --------
        >>> ser = pd.Series([1, 2, 3])
        >>> ser
        0    1
        1    2
        2    3
        dtype: int64

        >>> ser.searchsorted(4)
        3

        >>> ser.searchsorted([0, 4])
        array([0, 3])

        >>> ser.searchsorted([1, 3], side='left')
        array([0, 2])

        >>> ser.searchsorted([1, 3], side='right')
        array([1, 3])

        >>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000']))
        >>> ser
        0   2000-03-11
        1   2000-03-12
        2   2000-03-13
        dtype: datetime64[ns]

        >>> ser.searchsorted('3/14/2000')
        3

        >>> ser = pd.Categorical(
        ...     ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True
        ... )
        >>> ser
        ['apple', 'bread', 'bread', 'cheese', 'milk']
        Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']

        >>> ser.searchsorted('bread')
        1

        >>> ser.searchsorted(['bread'], side='right')
        array([3])

        If the values are not monotonically sorted, wrong locations
        may be returned:

        >>> ser = pd.Series([2, 1, 3])
        >>> ser
        0    2
        1    1
        2    3
        dtype: int64

        >>> ser.searchsorted(1)  # doctest: +SKIP
        0  # wrong result, correct would be 1
        searchsorted.r2   zLiteral[('left', 'right')]r0   znp.intp)rj   sidesorterrH   c                 C  s   d S rp   rC   rB   rj   r   r   rC   rC   rD   r     s    zIndexOpsMixin.searchsortedznpt.ArrayLike | ExtensionArrayznpt.NDArray[np.intp]c                 C  s   d S rp   rC   r   rC   rC   rD   r     s    r4   )r9   leftz$NumpyValueArrayLike | ExtensionArrayznpt.NDArray[np.intp] | np.intpc                 C  sX   t |tr$dt|j d}t|| j}t |tjsF|j|||dS t	j||||dS )Nz(Value must be 1-D array-like or scalar, z is not supported)r   r   )
rq   r"   r@   r\   r   r   rt   ru   r   r'   )rB   rj   r   r   r   r   rC   rC   rD   r     s    
firstkeepr/   c                C  s   | j |d}| |  S Nr   )_duplicated)rB   r   r;   rC   rC   rD   drop_duplicates2  s    zIndexOpsMixin.drop_duplicates)r   rH   c                 C  s   t j| j|dS r   )r'   r;   r   )rB   r   rC   rC   rD   r   7  s    zIndexOpsMixin._duplicatedc              	   C  sj   t | |}| j}t|ddd}t ||j}t|}tjdd t 	|||}W 5 Q R X | j
||dS )NT)Zextract_numpyZextract_ranger   )all)r   )r)   Zget_op_result_namer   r.   Zmaybe_prepare_scalar_for_opr   r-   rt   ZerrstateZarithmetic_op_construct_result)rB   otherr   Zres_nameZlvaluesZrvaluesr   rC   rC   rD   _arith_method;  s    zIndexOpsMixin._arith_methodc                 C  s   t | dS )z~
        Construct an appropriately-wrapped result from the ArrayLike result
        of an arithmetic-like operation.
        Nr   )rB   r   r   rC   rC   rD   r   H  s    zIndexOpsMixin._construct_result)NT)NT)NT)NT)N)FTFNT)T)F)FT)..)..)r   N)r   )8r\   r]   r^   r_   Z__array_priority__	frozensetr   r`   ra   r   r   r   r   Tr   r   rx   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Zto_listr   r   r   r%   r   r   r   r:   r   r   r   r   r   r'   r   textwrapdedentr6   r   r   r   r   r   r   rC   rC   rC   rD   r7     s   

@ ,   E,   f     _	'
#  g      )Sr_   
__future__r   r   typingr   r   r   r   r   r   r	   r
   r   r   numpyrt   Zpandas._configr   Zpandas._libsr   Zpandas._typingr   r   r   r   r   r   r   Zpandas.compatr   Zpandas.compat.numpyr   r   Zpandas.errorsr   Zpandas.util._decoratorsr   r   Zpandas.core.dtypes.castr   Zpandas.core.dtypes.commonr   r   r   r    r!   Zpandas.core.dtypes.genericr"   r#   r$   Zpandas.core.dtypes.missingr%   r&   Zpandas.corer'   r(   r)   Zpandas.core.accessorr*   Zpandas.core.arrayliker+   Zpandas.core.arraysr,   Zpandas.core.constructionr-   r.   r/   r0   r1   r2   r   r3   r4   r5   r6   r`   Z_indexops_doc_kwargsr<   r>   rc   rk   r7   rC   rC   rC   rD   <module>   sD   0$	/"X