U
    ^{f8y                     @  s  d Z ddlmZ ddlmZmZ ddlmZmZm	Z	 ddl
ZddlmZmZmZ ddlmZmZmZmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZ ddlm Z m!Z!m"Z" erddl#m$Z$ dddddZ%dddddZ&ddddddZ'ddddgZ(d d!d"d#d$d%d&d'd(d)d*d+d,d-gZ)d.d/d.d0d1d2Z*d.dd3d4d5d6Z+dd9d.d:d;d3d.dd<ddd=d>d?d@Z,dd9d/d:d.d3d.dd<d=dA	dBdCZ-d/d.d9dDdEdFZ.dd9d9dd3d.dd<dd3d=dG
dHdIZ/dddJdKdLZ0ddMddNdOdPZ1ddMd:dQdRdSZ2dd:dUdVdWdXZ3d9d.d3dd=dYdZd[Z4dd9d.d\d3dd=d]d^d_Z5dd`ddadbdcZ6dddddedfdgZ7e7dd9d3d`dhdidjdkZ8e7dd9d3d`dhdidldmZ9e7dd9d`dndodpZ:e7dd`dqdrdsZ;e8e9dtZ<dddvdwdxZ=ddydzd{Z>dd|d}d~Z?ddddddZ@dS )z$
Routines for filling missing data.
    )annotations)partialwraps)TYPE_CHECKINGAnycastN)NaTalgoslib)	ArrayLikeAxisAxisIntFnpt)import_optional_dependency)infer_dtype_from)is_array_likeis_numeric_v_string_likeis_object_dtypeneeds_i8_conversion)is_valid_na_for_dtypeisnana_value_for_dtype)Indexznpt.NDArray[np.bool_]int)masklengthc                 C  s8   t | r4t| |kr,tdt|  d| | | } | S )zJ
    Validate the size of the values passed to ExtensionArray.fillna.
    z'Length of 'value' does not match. Got (z)  expected )r   len
ValueError)valuer   r    r    R/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/pandas/core/missing.pycheck_value_size1   s    r"   r   )arrreturnc           
      C  s   t |\}}tj||d}d}t| r4d}t|  }t|}||  }tj| jtd}|D ]b}t| |rjqZ|rtj| jtj	d}	| | |k|	|< n"| |k}	t
|	tjs|	jtdd}	||	O }qZ| r|t| O }|S )a	  
    Return a masking array of same size/shape as arr
    with entries equaling any member of values_to_mask set to True

    Parameters
    ----------
    arr : ArrayLike
    values_to_mask: list, tuple, or scalar

    Returns
    -------
    np.ndarray[bool]
    )dtypeFT)r%   Zna_value)r   nparrayr   r   Zzerosshapeboolr   Zbool_
isinstancendarrayZto_numpyany)
r#   Zvalues_to_maskr%   Zpotential_naZarr_maskZna_maskZnonnar   xZnew_maskr    r    r!   mask_missing@   s,    



r.   Fz
str | Noner)   )methodallow_nearestc                 C  sv   | dkrd S t | tr8|  } | dkr,d} n| dkr8d} ddg}d}|rV|d d}| |krrtd	| d
|  | S )N)NZasfreqZffillpadZbfillbackfillzpad (ffill) or backfill (bfill)nearestz(pad (ffill), backfill (bfill) or nearestzInvalid fill method. Expecting z. Got )r*   strlowerappendr   )r/   r0   Zvalid_methodsZ	expectingr    r    r!   clean_fill_methody   s     

r7   lineartimeindexvaluesr3   zeroslinear	quadraticcubicbarycentrickroghspline
polynomialfrom_derivativespiecewise_polynomialpchipakimacubicspliner4   r   )r/   r:   r$   c                 K  sh   | d}| dkr"|d kr"tdtt }| |krHtd| d|  d| dkrd|jsdt|  d| S )	Norder)rB   rC   z7You must specify the order of the spline or polynomial.zmethod must be one of z. Got 'z
' instead.)rA   rE   rF   z4 interpolation requires that the index be monotonic.)getr   
NP_METHODS
SP_METHODSZis_monotonic_increasing)r/   r:   kwargsrI   validr    r    r!   clean_interp_method   s    
rO   z
int | None)howis_validr$   c                C  s   |dkst t| dkrdS | jdkr2|jdd}|dkrL|dd  }n&|dkrrt| d |ddd	   }|| }|sdS |S )
aG  
    Retrieves the index of the first valid value.

    Parameters
    ----------
    values : ndarray or ExtensionArray
    how : {'first', 'last'}
        Use this parameter to change between the first or last valid index.
    is_valid: np.ndarray
        Mask to find na_values.

    Returns
    -------
    int or None
    )firstlastr   N      axisrR   rS   )AssertionErrorr   ndimr,   Zargmax)r;   rP   rQ   ZidxposZ	chk_notnar    r    r!   find_valid_index   s    
r[   r1   forward
np.ndarrayr   zIndex | Nonez
Any | NoneNone)datar/   rW   r:   limitlimit_direction
limit_area
fill_valuecoercedowncastr$   c
                 K  s   zt |}W n tk
r$   d}Y nX |dk	rR|dk	r>tdt| ||||d n,|dk	s^ttf | |||||||d|
 dS )z
    Wrapper to dispatch to either interpolate_2d or _interpolate_2d_with_fill.

    Notes
    -----
    Alters 'data' in-place.
    Nz&Cannot pass both fill_value and method)r/   rW   r`   rb   )r_   r:   rW   r/   r`   ra   rb   rc   )r7   r   interpolate_2drY   _interpolate_2d_with_fill)r_   r/   rW   r:   r`   ra   rb   rc   rd   re   rM   mr    r    r!   interpolate_array_2d   s6    
	ri   )	r_   r:   rW   r/   r`   ra   rb   rc   r$   c                   s   t |f t | jr(t| jdd dkrFt|jsBtdddddg}	 |	krvtd	|	 d
 ddk	rddg}
 |
krtd|
 d dtjddt	|ddd fdd}t
|||  dS )z
    Column-wise application of _interpolate_1d.

    Notes
    -----
    Alters 'data' in-place.

    The signature does differ from _interpolate_1d because it only
    includes what is needed for Block.interpolate.
    F)compatr9   zStime-weighted interpolation only works on Series or DataFrames with a DatetimeIndexr;   r\   backwardZbothz*Invalid limit_direction: expecting one of z, got 'z'.Ninsideoutsidez%Invalid limit_area: expecting one of z, got .)Znobsr`   r]   r^   )yvaluesr$   c                   s$   t f |  dd d S )NF)indicesro   r/   r`   ra   rb   rc   bounds_error)_interpolate_1d)ro   rc   rp   rM   r`   rb   ra   r/   r    r!   funcR  s    	z'_interpolate_2d_with_fill.<locals>.func)rO   r   r%   r   r   r   r5   r	   Zvalidate_limit_index_to_interp_indicesr&   apply_along_axis)r_   r:   rW   r/   r`   ra   rb   rc   rM   Zvalid_limit_directionsZvalid_limit_areasrt   r    rs   r!   rg     s4    


 rg   )r:   r/   r$   c                 C  s`   | j }t|jr|d}|dkr4|}ttj|}n(t|}|dkr\|jtjkr\t	
|}|S )zE
    Convert Index to ndarray of indices to pass to NumPy/SciPy.
    i8r8   )r;   r:   )_valuesr   r%   viewr   r&   r+   asarrayZobject_r
   Zmaybe_convert_objects)r:   r/   ZxarrZindsr    r    r!   ru   j  s    



ru   )
rp   ro   r/   r`   ra   rb   rc   rq   rI   r$   c	                 K  s  t |}
|
 }| sdS | r&dS tt|
}t|d|d}|dkrNd}tt|}t|d|d}|dkrxt|}ttd| t|}|dkr|tt	|
|dB }n.|dkr|tt	|
d|B }ntt	|
||}|d	kr|||B O }n|d
kr|| | }||O }t
|}t|j}|r0|d}|tkrpt| | }t| |
 | | | || | ||
< n.t| | || | |
 f||||d|	||
< |rtj||< n
tj||< dS )a  
    Logic for the 1-d interpolation.  The input
    indices and yvalues will each be 1-d arrays of the same length.

    Bounds_error is currently hardcoded to False since non-scipy ones don't
    take it as an argument.

    Notes
    -----
    Fills 'yvalues' in-place.
    NrR   rP   rQ   r   rS   rU   r\   rk   rl   rm   rw   )r/   rc   rq   rI   )r   r,   allsetr&   Zflatnonzeror[   ranger   _interp_limitsortedr   r%   ry   rK   ZargsortZinterp_interpolate_scipy_wrapperr   r   nan)rp   ro   r/   r`   ra   rb   rc   rq   rI   rM   invalidrN   Zall_nansZfirst_valid_indexZ
start_nansZlast_valid_indexZend_nansZpreserve_nansZmid_nansZis_datetimelikeZindexerr    r    r!   rr     sh    



 
 



rr   )rq   c                 K  sx  | d}t d|d ddlm}	 t|}|	j|	jttd}
t| ddrb| j	
d	|
d	 } }|d
krv|	j|
d
< n"|dkrt|
d< n|dkrt|
d< ddddddg}||kr|dkr|}|	j| ||||d}||}n|dkr&t|s|dkrtd| |	j| |fd|i|}||}nN| jjs8|  } |jjsJ| }|jjs\| }|
| }|| ||f|}|S )z
    Passed off to scipy.interpolate.interp1d. method is scipy's kind.
    Returns an array interpolated at new_x.  Add any new methods to
    the list in _clean_interp_method.
    z interpolation requires SciPy.scipy)extrar   interpolate)r@   rA   rD   rE   Z_is_all_datesFrw   rF   rG   rH   r3   r<   r=   r>   r?   rC   )kindrc   rq   rB   z;order needs to be specified and greater than 0; got order: k)r   r   r   r&   rz   Zbarycentric_interpolateZkrogh_interpolate_from_derivativesgetattrrx   ZastypeZpchip_interpolate_akima_interpolate_cubicspline_interpolateZinterp1dr   r   ZUnivariateSplineflagsZ	writeablecopy)r-   yZnew_xr/   rc   rq   rI   rM   r   r   Zalt_methodsZinterp1d_methodsZterpZnew_yr    r    r!   r     sf    


    





r   zint | list[int] | None)derextrapolatec           	      C  s4   ddl m} |jj}|| |dd||d}||S )a  
    Convenience function for interpolate.BPoly.from_derivatives.

    Construct a piecewise polynomial in the Bernstein basis, compatible
    with the specified values and derivatives at breakpoints.

    Parameters
    ----------
    xi : array-like
        sorted 1D array of x-coordinates
    yi : array-like or list of array-likes
        yi[i][j] is the j-th derivative known at xi[i]
    order: None or int or array-like of ints. Default: None.
        Specifies the degree of local polynomials. If not None, some
        derivatives are ignored.
    der : int or list
        How many derivatives to extract; None for all potentially nonzero
        derivatives (that is a number equal to the number of points), or a
        list of derivatives to extract. This number includes the function
        value as 0th derivative.
     extrapolate : bool, optional
        Whether to extrapolate to ouf-of-bounds points based on first and last
        intervals, or to return NaNs. Default: True.

    See Also
    --------
    scipy.interpolate.BPoly.from_derivatives

    Returns
    -------
    y : scalar or array-like
        The result, of length R or length M or M by R.
    r   r   rX   rU   )Zordersr   )r   r   ZBPolyrD   reshape)	xiyir-   rI   r   r   r   r/   rh   r    r    r!   r   9  s    $r   )r   rW   c                 C  s(   ddl m} |j| ||d}|||dS )a[  
    Convenience function for akima interpolation.
    xi and yi are arrays of values used to approximate some function f,
    with ``yi = f(xi)``.

    See `Akima1DInterpolator` for details.

    Parameters
    ----------
    xi : array-like
        A sorted list of x-coordinates, of length N.
    yi : array-like
        A 1-D array of real values.  `yi`'s length along the interpolation
        axis must be equal to the length of `xi`. If N-D array, use axis
        parameter to select correct axis.
    x : scalar or array-like
        Of length M.
    der : int, optional
        How many derivatives to extract; None for all potentially
        nonzero derivatives (that is a number equal to the number
        of points), or a list of derivatives to extract. This number
        includes the function value as 0th derivative.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    See Also
    --------
    scipy.interpolate.Akima1DInterpolator

    Returns
    -------
    y : scalar or array-like
        The result, of length R or length M or M by R,

    r   r   rV   )nu)r   r   ZAkima1DInterpolator)r   r   r-   r   rW   r   Pr    r    r!   r   f  s    $r   
not-a-knotzstr | tuple[Any, Any])rW   bc_typec                 C  s(   ddl m} |j| ||||d}||S )aq  
    Convenience function for cubic spline data interpolator.

    See `scipy.interpolate.CubicSpline` for details.

    Parameters
    ----------
    xi : array-like, shape (n,)
        1-d array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    yi : array-like
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    x : scalar or array-like, shape (m,)
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    bc_type : string or 2-tuple, optional
        Boundary condition type. Two additional equations, given by the
        boundary conditions, are required to determine all coefficients of
        polynomials on each segment [2]_.
        If `bc_type` is a string, then the specified condition will be applied
        at both ends of a spline. Available conditions are:
        * 'not-a-knot' (default): The first and second segment at a curve end
          are the same polynomial. It is a good default when there is no
          information on boundary conditions.
        * 'periodic': The interpolated functions is assumed to be periodic
          of period ``x[-1] - x[0]``. The first and last value of `y` must be
          identical: ``y[0] == y[-1]``. This boundary condition will result in
          ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
        * 'clamped': The first derivative at curves ends are zero. Assuming
          a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
        * 'natural': The second derivative at curve ends are zero. Assuming
          a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.
        If `bc_type` is a 2-tuple, the first and the second value will be
        applied at the curve start and end respectively. The tuple values can
        be one of the previously mentioned strings (except 'periodic') or a
        tuple `(order, deriv_values)` allowing to specify arbitrary
        derivatives at curve ends:
        * `order`: the derivative order, 1 or 2.
        * `deriv_value`: array-like containing derivative values, shape must
          be the same as `y`, excluding ``axis`` dimension. For example, if
          `y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
          the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
          and have the shape (n0, n1).
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), ``extrapolate`` is
        set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.

    See Also
    --------
    scipy.interpolate.CubicHermiteSpline

    Returns
    -------
    y : scalar or array-like
        The result, of shape (m,)

    References
    ----------
    .. [1] `Cubic Spline Interpolation
            <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
            on Wikiversity.
    .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
    r   r   )rW   r   r   )r   r   ZCubicSpline)r   r   r-   rW   r   r   r   r   r    r    r!   r     s    M    r   )r;   r/   r`   rb   r$   c                 C  s   t | }| }| st| d|d}|dkr0d}t| d|d}|dkrNt| }t| ||d |dkrvd|||d	 < n$|d
krd |d|< ||d	 d< tj| |< dS )a  
    Apply interpolation and limit_area logic to values along a to-be-specified axis.

    Parameters
    ----------
    values: np.ndarray
        Input array.
    method: str
        Interpolation method. Could be "bfill" or "pad"
    limit: int, optional
        Index limit on interpolation.
    limit_area: str
        Limit area for interpolation. Can be "inside" or "outside"

    Notes
    -----
    Modifies values in-place.
    rR   r{   Nr   rS   )r/   r`   rl   FrU   rm   )r   r|   r[   r   rf   r&   r   )r;   r/   r`   rb   r   rQ   rR   rS   r    r    r!   _interpolate_with_limit_area  s&    r   r   )r;   r/   rW   r`   rb   r$   c                 C  s   |dk	r&t tt|||d||  dS |dkr6dd ndd }| jdkrl|dkrXtd| td	| j } t	|}|| }|d
krt
||d nt||d dS )a  
    Perform an actual interpolation of values, values will be make 2-d if
    needed fills inplace, returns the result.

    Parameters
    ----------
    values: np.ndarray
        Input array.
    method: str, default "pad"
        Interpolation method. Could be "bfill" or "pad"
    axis: 0 or 1
        Interpolation axis
    limit: int, optional
        Index limit on interpolation.
    limit_area: str, optional
        Limit area for interpolation. Can be "inside" or "outside"

    Notes
    -----
    Modifies values in-place.
    N)r/   r`   rb   r   c                 S  s   | S Nr    r-   r    r    r!   <lambda>I      z interpolate_2d.<locals>.<lambda>c                 S  s   | j S r   )Tr   r    r    r!   r   I  r   rU   z0cannot interpolate on a ndim == 1 with axis != 0)rU   r1   r`   )r&   rv   r   r   rZ   rY   r   tupler(   r7   _pad_2d_backfill_2d)r;   r/   rW   r`   rb   ZtransfZtvaluesr    r    r!   rf     s.    	
rf   znpt.NDArray[np.bool_] | None)r   r$   c                 C  s    |d krt | }|tj}|S r   )r   ry   r&   Zuint8r;   r   r    r    r!   _fillna_prep]  s    r   r   )rt   r$   c                   s    t  d fdd	}tt|S )z>
    Wrapper to handle datetime64 and timedelta64 dtypes.
    Nc                   sP   t | jrB|d krt| } | d||d\}}|| j|fS  | ||dS )Nrw   )r`   r   )r   r%   r   ry   )r;   r`   r   resultrt   r    r!   new_funcn  s    
z&_datetimelike_compat.<locals>.new_func)NN)r   r   r   )rt   r   r    r   r!   _datetimelike_compati  s    r   z(tuple[np.ndarray, npt.NDArray[np.bool_]])r;   r`   r   r$   c                 C  s"   t | |}tj| ||d | |fS Nr   )r   r	   Zpad_inplacer;   r`   r   r    r    r!   _pad_1d}  s    
r   c                 C  s"   t | |}tj| ||d | |fS r   )r   r	   Zbackfill_inplacer   r    r    r!   _backfill_1d  s    
r   r   c                 C  s0   t | |}t| jr(tj| ||d n | |fS r   )r   r&   r|   r(   r	   Zpad_2d_inplacer   r    r    r!   r     s    
r   )r   c                 C  s0   t | |}t| jr(tj| ||d n | |fS r   )r   r&   r|   r(   r	   Zbackfill_2d_inplacer   r    r    r!   r     s    
r   r1   r2   rU   )rZ   c                 C  s&   t | } |dkrt|  S ttd|  S )NrU   r   )r7   _fill_methodsr   r   )r/   rZ   r    r    r!   get_fill_func  s    r   )r$   c                 C  s   t | ddS )NT)r0   )r7   )r/   r    r    r!   clean_reindex_fill_method  s    r   )r   c                   s   t |  t }t } fdd}|dk	rN|dkrDtt| d }n
|| |}|dk	r|dkrb|S t|| ddd |}t d t| }|dkr|S ||@ S )ak  
    Get indexers of values that won't be filled
    because they exceed the limits.

    Parameters
    ----------
    invalid : np.ndarray[bool]
    fw_limit : int or None
        forward limit to index
    bw_limit : int or None
        backward limit to index

    Returns
    -------
    set of indexers

    Notes
    -----
    This is equivalent to the more readable, but slower

    .. code-block:: python

        def _interp_limit(invalid, fw_limit, bw_limit):
            for x in np.where(invalid)[0]:
                if invalid[max(0, x - fw_limit):x + bw_limit + 1].all():
                    yield x
    c                   s`   t | }t| |d d}tt|d | tt| d |d    dkd B }|S )NrU   r   )min_rolling_windowr|   r}   r&   whereZcumsum)r   r`   ZwindowedidxNr    r!   inner  s    
"z_interp_limit.<locals>.innerNr   rX   rU   )r   r}   r&   r   listrz   )r   Zfw_limitZbw_limitZf_idxZb_idxr   Z	b_idx_invr    r   r!   r     s     
r   )awindowr$   c                 C  sJ   | j dd | j d | d |f }| j| jd f }tjjj| ||dS )z
    [True, True, False, True, False], 2 ->

    [
        [True,  True],
        [True, False],
        [False, True],
        [True, False],
    ]
    NrX   rU   )r(   strides)r(   r   r&   r
   Zstride_tricksZ
as_strided)r   r   r(   r   r    r    r!   r     s    $r   )F)	r1   r   NNr\   NNFN)r8   Nr\   NN)r8   Nr\   NNFN)NFN)Nr   F)r   r   )r   r   N)r1   r   NN)N)NN)NN)NN)NN)rU   )A__doc__
__future__r   	functoolsr   r   typingr   r   r   numpyr&   Zpandas._libsr   r	   r
   Zpandas._typingr   r   r   r   r   Zpandas.compat._optionalr   Zpandas.core.dtypes.castr   Zpandas.core.dtypes.commonr   r   r   r   Zpandas.core.dtypes.missingr   r   r   Zpandasr   r"   r.   r7   rK   rL   rO   r[   ri   rg   ru   rr   r   r   r   r   r   rf   r   r   r   r   r   r   r   r   r   r   r   r    r    r    r!   <module>   s   9+         $9      R       "q   N     -/   V1    H   
  

?