U
    9%e7=                     @   s   d dl Z d dlZd dlmZ d dlZd dlmZ d dlm	Z	 ddl
mZmZ ddlmZmZmZmZ ddlmZmZ dd	lmZmZ dd
lmZmZ dddgZdd ZdddddddZG dd deeeZdS )    N)Real)interpolate)	spearmanr   )'_inplace_contiguous_isotonic_regression_make_unique)BaseEstimatorRegressorMixinTransformerMixin_fit_context)check_arraycheck_consistent_length)Interval
StrOptions)_check_sample_weightcheck_is_fittedcheck_increasingisotonic_regressionIsotonicRegressionc           	      C   s   t | |\}}|dk}|dkrt| dkrdtd| d|   }dtt| d  }t|d|  }t|d|  }t|t|krt	d |S )	aG  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogsqrttanhnpsignwarningswarn)	xyrho_Zincreasing_boolFZF_seZrho_0Zrho_1 r%   O/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/isotonic.pyr      s    "Tsample_weighty_miny_max
increasingc                C   s   |rt jdd nt jddd }t| ddt jt jgd} t j| | | jd} t|| | jdd}t || }t	| | |dk	s|dk	r|dkrt j
 }|dkrt j
}t | |||  | | S )	a.  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False).

    Returns
    -------
    y_ : ndarray of shape (n_samples,)
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.
    NFr!   )	ensure_2d
input_namedtyper/   T)r/   copy)r   Zs_r   float64float32arrayr/   r   Zascontiguousarrayr   infclip)r!   r(   r)   r*   r+   orderr%   r%   r&   r   R   s    &"
c                       s   e Zd ZU dZeedddddgeedddddgdedhgeddd	hgd
Zee	d< ddddd
ddZ
dd Zdd Zd&ddZeddd'ddZdd Zdd Zdd Zd(ddZ fd d!Z fd"d#Zd$d% Z  ZS ))r   a  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    See Also
    --------
    sklearn.linear_model.LinearRegression : Ordinary least squares Linear
        Regression.
    sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
        is a non-parametric model accepting monotonicity constraints.
    isotonic_regression : Function to solve the isotonic regression model.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    NZboth)closedbooleanautonanr6   raiser)   r*   r+   out_of_bounds_parameter_constraintsTc                C   s   || _ || _|| _|| _d S Nr=   )selfr)   r*   r+   r>   r%   r%   r&   __init__   s    zIsotonicRegression.__init__c                 C   s2   |j dks.|j dkr"|jd dks.d}t|d S )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)rA   Xmsgr%   r%   r&   _check_input_data_shape   s    "z*IsotonicRegression._check_input_data_shapec                    s>   | j dk}t dkr& fdd| _ntj| d|d| _dS )zBuild the f_ interp1d function.r<   r   c                    s     | jS r@   )repeatrE   )r    r!   r%   r&   <lambda>      z-IsotonicRegression._build_f.<locals>.<lambda>Zlinear)kindbounds_errorN)r>   r   f_r   Zinterp1d)rA   rG   r!   rO   r%   rK   r&   _build_f   s    
   zIsotonicRegression._build_fc           
   	      sV  |  | |d}| jdkr,t||| _n| j| _t|||jd}|dk}|| || ||   }}}t||f  fdd|||fD \}}}t	|||\}}}|}t
||| j| j| jd}t|t| | _| _|rJtjt|ftd}	tt|dd |d	d
 t|dd |dd	 |	dd< ||	 ||	 fS ||fS d	S )z Build the y_ IsotonicRegression.r,   r:   r0   r   c                    s   g | ]}|  qS r%   r%   ).0r4   r7   r%   r&   
<listcomp>  s     z/IsotonicRegression._build_y.<locals>.<listcomp>r'   r   NrC   )rI   reshaper+   r   Zincreasing_r   r/   r   Zlexsortr   r   r)   r*   minmaxX_min_X_max_Zonesr   bool
logical_or	not_equal)
rA   rG   r!   r(   Ztrim_duplicatesmaskZunique_XZunique_yZunique_sample_weightZ	keep_datar%   rS   r&   _build_y  s8    


	 zIsotonicRegression._build_y)Zprefer_skip_nested_validationc                 C   s~   t ddd}t|fdtjtjgd|}t|fd|jd|}t||| | |||\}}|| | _| _	| 
|| | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)Zaccept_sparser-   rG   )r.   r/   r!   )dictr   r   r2   r3   r/   r   r_   X_thresholds_y_thresholds_rQ   )rA   rG   r!   r(   Zcheck_paramsr%   r%   r&   fit9  s     
zIsotonicRegression.fitc                 C   sr   t | dr| jj}ntj}t||dd}| | |d}| jdkrXt	|| j
| j}| |}||j}|S )a  `_transform` is called by both `transform` and `predict` methods.

        Since `transform` is wrapped to output arrays of specific types (e.g.
        NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
        directly.

        The above behaviour could be changed in the future, if we decide to output
        other type of arrays when calling `predict`.
        ra   F)r/   r-   r,   r6   )hasattrra   r/   r   r2   r   rI   rV   r>   r6   rY   rZ   rP   Zastype)rA   Tr/   resr%   r%   r&   
_transformk  s    






zIsotonicRegression._transformc                 C   s
   |  |S )a  Transform new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data.
        rg   rA   re   r%   r%   r&   	transform  s    zIsotonicRegression.transformc                 C   s
   |  |S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        rh   ri   r%   r%   r&   predict  s    zIsotonicRegression.predictc                 C   s,   t | d | jj }tj| dgtdS )aK  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Ignored.

        Returns
        -------
        feature_names_out : ndarray of str objects
            An ndarray with one string i.e. ["isotonicregression0"].
        rP   0r0   )r   	__class____name__lowerr   Zasarrayobject)rA   Zinput_features
class_namer%   r%   r&   get_feature_names_out  s    
z(IsotonicRegression.get_feature_names_outc                    s   t   }|dd |S )z0Pickle-protocol - return state of the estimator.rP   N)super__getstate__poprA   staterm   r%   r&   rt     s    
zIsotonicRegression.__getstate__c                    s4   t  | t| dr0t| dr0| | j| j dS )znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        ra   rb   N)rs   __setstate__rd   rQ   ra   rb   rv   rx   r%   r&   ry     s    zIsotonicRegression.__setstate__c                 C   s
   ddgiS )NZX_typesZ1darrayr%   )rA   r%   r%   r&   
_more_tags  s    zIsotonicRegression._more_tags)T)N)N)rn   
__module____qualname____doc__r   r   r   r?   r`   __annotations__rB   rI   rQ   r_   r   rc   rg   rj   rk   rr   rt   ry   rz   __classcell__r%   r%   rx   r&   r      s&   
^
11
	)r   r   numbersr   numpyr   Zscipyr   Zscipy.statsr   Z	_isotonicr   r   baser   r	   r
   r   utilsr   r   Zutils._param_validationr   r   Zutils.validationr   r   __all__r   r   r   r%   r%   r%   r&   <module>   s$   
<   7