U
    9%e#                     @   s   d Z ddlmZmZ ddlZddlmZmZm	Z	m
Z
 ddlmZ ddlmZmZ ddlmZmZ dd	lmZmZ G d
d dee	eZdS )zFModule :mod:`sklearn.kernel_ridge` implements kernel ridge regression.    )IntegralRealN   )BaseEstimatorMultiOutputMixinRegressorMixin_fit_context)_solve_cholesky_kernel)PAIRWISE_KERNEL_FUNCTIONSpairwise_kernels)Interval
StrOptions)_check_sample_weightcheck_is_fittedc                
   @   s   e Zd ZU dZeedddddgeee	 dhB e
geedddddgeeddddgeeddddgedgd	Zeed
< dddddddddZdddZdd ZedddddZdd ZdS )KernelRidgea  Kernel ridge regression.

    Kernel ridge regression (KRR) combines ridge regression (linear least
    squares with l2-norm regularization) with the kernel trick. It thus
    learns a linear function in the space induced by the respective kernel and
    the data. For non-linear kernels, this corresponds to a non-linear
    function in the original space.

    The form of the model learned by KRR is identical to support vector
    regression (SVR). However, different loss functions are used: KRR uses
    squared error loss while support vector regression uses epsilon-insensitive
    loss, both combined with l2 regularization. In contrast to SVR, fitting a
    KRR model can be done in closed-form and is typically faster for
    medium-sized datasets. On the other hand, the learned model is non-sparse
    and thus slower than SVR, which learns a sparse model for epsilon > 0, at
    prediction-time.

    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

    Read more in the :ref:`User Guide <kernel_ridge>`.

    Parameters
    ----------
    alpha : float or array-like of shape (n_targets,), default=1.0
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number. See :ref:`ridge_regression` for formula.

    kernel : str or callable, default="linear"
        Kernel mapping used internally. This parameter is directly passed to
        :class:`~sklearn.metrics.pairwise.pairwise_kernels`.
        If `kernel` is a string, it must be one of the metrics
        in `pairwise.PAIRWISE_KERNEL_FUNCTIONS` or "precomputed".
        If `kernel` is "precomputed", X is assumed to be a kernel matrix.
        Alternatively, if `kernel` is a callable function, it is called on
        each pair of instances (rows) and the resulting value recorded. The
        callable should take two rows from X as input and return the
        corresponding kernel value as a single number. This means that
        callables from :mod:`sklearn.metrics.pairwise` are not allowed, as
        they operate on matrices, not single samples. Use the string
        identifying the kernel instead.

    gamma : float, default=None
        Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
        and sigmoid kernels. Interpretation of the default value is left to
        the kernel; see the documentation for sklearn.metrics.pairwise.
        Ignored by other kernels.

    degree : int, default=3
        Degree of the polynomial kernel. Ignored by other kernels.

    coef0 : float, default=1
        Zero coefficient for polynomial and sigmoid kernels.
        Ignored by other kernels.

    kernel_params : dict, default=None
        Additional parameters (keyword arguments) for kernel function passed
        as callable object.

    Attributes
    ----------
    dual_coef_ : ndarray of shape (n_samples,) or (n_samples, n_targets)
        Representation of weight vector(s) in kernel space

    X_fit_ : {ndarray, sparse matrix} of shape (n_samples, n_features)
        Training data, which is also required for prediction. If
        kernel == "precomputed" this is instead the precomputed
        training matrix, of shape (n_samples, n_samples).

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.gaussian_process.GaussianProcessRegressor : Gaussian
        Process regressor providing automatic kernel hyperparameters
        tuning and predictions uncertainty.
    sklearn.linear_model.Ridge : Linear ridge regression.
    sklearn.linear_model.RidgeCV : Ridge regression with built-in
        cross-validation.
    sklearn.svm.SVR : Support Vector Regression accepting a large variety
        of kernels.

    References
    ----------
    * Kevin P. Murphy
      "Machine Learning: A Probabilistic Perspective", The MIT Press
      chapter 14.4.3, pp. 492-493

    Examples
    --------
    >>> from sklearn.kernel_ridge import KernelRidge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> rng = np.random.RandomState(0)
    >>> y = rng.randn(n_samples)
    >>> X = rng.randn(n_samples, n_features)
    >>> krr = KernelRidge(alpha=1.0)
    >>> krr.fit(X, y)
    KernelRidge(alpha=1.0)
    r   Nleft)closedz
array-likeprecomputedZneitheralphakernelgammadegreecoef0kernel_params_parameter_constraintsr   Zlinear   )r   r   r   r   r   c                C   s(   || _ || _|| _|| _|| _|| _d S )Nr   )selfr   r   r   r   r   r    r   S/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/kernel_ridge.py__init__   s    
zKernelRidge.__init__c                 C   sB   t | jr| jpi }n| j| j| jd}t||f| jdd|S )N)r   r   r   T)ZmetricZfilter_params)callabler   r   r   r   r   r   )r   XYparamsr   r   r   _get_kernel   s    
zKernelRidge._get_kernelc                 C   s   d| j dkiS )Npairwiser   )r   )r   r   r   r   
_more_tags   s    zKernelRidge._more_tagsT)Zprefer_skip_nested_validationc                 C   s   | j ||dddd\}}|dk	r4t|ts4t||}| |}t| j}d}t|j	dkrl|
dd}d}| jdk}t|||||| _|r| j | _|| _| S )	a  Fit Kernel Ridge regression model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data. If kernel == "precomputed" this is instead
            a precomputed kernel matrix, of shape (n_samples, n_samples).

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values.

        sample_weight : float or array-like of shape (n_samples,), default=None
            Individual weights for each sample, ignored if None is passed.

        Returns
        -------
        self : object
            Returns the instance itself.
        ZcsrZcscT)accept_sparseZmulti_outputZ	y_numericNFr   r   )_validate_data
isinstancefloatr   r%   npZ
atleast_1dr   lenshapeZreshaper   r	   
dual_coef_ravelX_fit_)r   r"   yZsample_weightKr   r2   copyr   r   r   fit   s*        



zKernelRidge.fitc                 C   s4   t |  | j|ddd}| || j}t|| jS )a)  Predict using the kernel ridge model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples. If kernel == "precomputed" this is instead a
            precomputed kernel matrix, shape = [n_samples,
            n_samples_fitted], where n_samples_fitted is the number of
            samples used in the fitting for this estimator.

        Returns
        -------
        C : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Returns predicted values.
        r(   F)r)   reset)r   r+   r%   r3   r.   dotr1   )r   r"   r5   r   r   r   predict   s    zKernelRidge.predict)r   )N)N)__name__
__module____qualname____doc__r   r   r   setr
   keysr!   r   dictr   __annotations__r    r%   r'   r   r7   r:   r   r   r   r   r      s.   
u 
,r   )r>   numbersr   r   numpyr.   baser   r   r   r   Zlinear_model._ridger	   Zmetrics.pairwiser
   r   Zutils._param_validationr   r   Zutils.validationr   r   r   r   r   r   r   <module>   s   