U
    9%e-                     @   s   d dl Z d dlZddlmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZmZ ddlmZ ddlmZ dd	lmZ d
gZG dd
 d
eeZdS )    N   )BaseEstimatorRegressorMixin_fit_contextclone)NotFittedError)FunctionTransformer)_safe_indexingcheck_array)
HasMethods)
_safe_tags)check_is_fittedTransformedTargetRegressorc                   @   s   e Zd ZU dZeddgdgeddgedgedgdgdZeed< ddddd	d
ddZ	dd Z
edddd Zdd Zdd Zedd ZdS )r   a  Meta-estimator to regress on a transformed target.

    Useful for applying a non-linear transformation to the target `y` in
    regression problems. This transformation can be given as a Transformer
    such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a
    function and its inverse such as `np.log` and `np.exp`.

    The computation during :meth:`fit` is::

        regressor.fit(X, func(y))

    or::

        regressor.fit(X, transformer.transform(y))

    The computation during :meth:`predict` is::

        inverse_func(regressor.predict(X))

    or::

        transformer.inverse_transform(regressor.predict(X))

    Read more in the :ref:`User Guide <transformed_target_regressor>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    regressor : object, default=None
        Regressor object such as derived from
        :class:`~sklearn.base.RegressorMixin`. This regressor will
        automatically be cloned each time prior to fitting. If `regressor is
        None`, :class:`~sklearn.linear_model.LinearRegression` is created and used.

    transformer : object, default=None
        Estimator object such as derived from
        :class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time
        as `func` and `inverse_func`. If `transformer is None` as well as
        `func` and `inverse_func`, the transformer will be an identity
        transformer. Note that the transformer will be cloned during fitting.
        Also, the transformer is restricting `y` to be a numpy array.

    func : function, default=None
        Function to apply to `y` before passing to :meth:`fit`. Cannot be set
        at the same time as `transformer`. The function needs to return a
        2-dimensional array. If `func is None`, the function used will be the
        identity function.

    inverse_func : function, default=None
        Function to apply to the prediction of the regressor. Cannot be set at
        the same time as `transformer`. The function needs to return a
        2-dimensional array. The inverse function is used to return
        predictions to the same space of the original training labels.

    check_inverse : bool, default=True
        Whether to check that `transform` followed by `inverse_transform`
        or `func` followed by `inverse_func` leads to the original targets.

    Attributes
    ----------
    regressor_ : object
        Fitted regressor.

    transformer_ : object
        Transformer used in :meth:`fit` and :meth:`predict`.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying regressor exposes such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.preprocessing.FunctionTransformer : Construct a transformer from an
        arbitrary callable.

    Notes
    -----
    Internally, the target `y` is always converted into a 2-dimensional array
    to be used by scikit-learn transformers. At the time of prediction, the
    output will be reshaped to a have the same number of dimensions as `y`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.linear_model import LinearRegression
    >>> from sklearn.compose import TransformedTargetRegressor
    >>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
    ...                                 func=np.log, inverse_func=np.exp)
    >>> X = np.arange(4).reshape(-1, 1)
    >>> y = np.exp(2 * X).ravel()
    >>> tt.fit(X, y)
    TransformedTargetRegressor(...)
    >>> tt.score(X, y)
    1.0
    >>> tt.regressor_.coef_
    array([2.])

    For a more detailed example use case refer to
    :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`.
    fitpredictN	transformboolean	regressortransformerfuncinverse_funccheck_inverse_parameter_constraintsT)r   r   r   r   c                C   s"   || _ || _|| _|| _|| _d S )Nr   )selfr   r   r   r   r    r   V/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/compose/_target.py__init__   s
    	z#TransformedTargetRegressor.__init__c                 C   s   | j dk	r(| jdk	s| jdk	r(tdnL| j dk	r@t| j | _n4| jdk	r\| jdkr\tdt| j| jd| jd| _| j| | jrt	ddt
d|jd d }t||}| j|}t|| j|std	t dS )
zCheck transformer and fit transformer.

        Create the default transformer, fit it and make additional inverse
        check on a subset (optional).

        NzE'transformer' and functions 'func'/'inverse_func' cannot both be set.z=When 'func' is provided, 'inverse_func' must also be providedT)r   r   validater      r   
   zThe provided functions or transformer are not strictly inverse of each other. If you are sure you want to proceed regardless, set 'check_inverse=False')r   r   r   
ValueErrorr   transformer_r   r   r   slicemaxshaper	   r   npZallcloseinverse_transformwarningswarnUserWarning)r   yZidx_selectedZy_selZy_sel_tr   r   r   _fit_transformer   s<    



z+TransformedTargetRegressor._fit_transformerF)Zprefer_skip_nested_validationc              	   K   s   |dkrt d| jj dt|ddddddd}|j| _|jd	krR|d
d	}n|}| | | j	|}|jdkr|j
d	 d	kr|jd	d}| jdkrddlm} | | _nt| j| _| jj||f| t| jdr| jj| _| S )aB  Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        **fit_params : dict
            Parameters passed to the `fit` method of the underlying
            regressor.

        Returns
        -------
        self : object
            Fitted estimator.
        NzThis z= estimator requires y to be passed, but the target y is None.r+   FTnumeric)Z
input_nameZaccept_sparseZforce_all_finiteZ	ensure_2dZdtypeZallow_ndr   r   ZaxisLinearRegressionfeature_names_in_)r!   	__class____name__r
   ndim_training_dimreshaper,   r"   r   r%   squeezer   linear_modelr1   
regressor_r   r   hasattrr2   )r   Xr+   Z
fit_paramsZy_2dZy_transr1   r   r   r   r      s:    




zTransformedTargetRegressor.fitc                 K   sv   t |  | jj|f|}|jdkr8| j|dd}n| j|}| jdkrr|jdkrr|jd dkrr|j	dd}|S )aK  Predict using the base regressor, applying inverse.

        The regressor is used to predict and the `inverse_func` or
        `inverse_transform` is applied before returning the prediction.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples.

        **predict_params : dict of str -> object
            Parameters passed to the `predict` method of the underlying
            regressor.

        Returns
        -------
        y_hat : ndarray of shape (n_samples,)
            Predicted values.
        r   r.   r   r/   )
r   r:   r   r5   r"   r'   r7   r6   r%   r8   )r   r<   Zpredict_paramspredZ
pred_transr   r   r   r     s    
z"TransformedTargetRegressor.predictc                 C   s2   | j }|d kr ddlm} | }dt|dddS )Nr   r0   Tmultioutput)key)Z
poor_scorer>   )r   r9   r1   r   )r   r   r1   r   r   r   
_more_tags5  s    
z%TransformedTargetRegressor._more_tagsc              
   C   sL   zt |  W n6 tk
rB } ztd| jj|W 5 d}~X Y nX | jjS )z+Number of features seen during :term:`fit`.z*{} object has no n_features_in_ attribute.N)r   r   AttributeErrorformatr3   r4   r:   n_features_in_)r   Znfer   r   r   rC   A  s    z)TransformedTargetRegressor.n_features_in_)N)r4   
__module____qualname____doc__r   callabler   dict__annotations__r   r,   r   r   r   r@   propertyrC   r   r   r   r   r      s.   
o

 .
F#)r(   numpyr&   baser   r   r   r   
exceptionsr   Zpreprocessingr   utilsr	   r
   Zutils._param_validationr   Zutils._tagsr   Zutils.validationr   __all__r   r   r   r   r   <module>   s   