U
    9%ee,                     @   s   d Z ddlmZmZ ddlZddlmZmZm	Z	m
Z
mZ ddlmZ ddlmZmZ ddlmZmZmZmZ dd	lmZ dd
lmZ ddlmZ G dd deeeZdS )z
Sequential feature selection
    )IntegralRealN   )BaseEstimatorMetaEstimatorMixin_fit_contextcloneis_classifier)get_scorer_names)check_cvcross_val_score)
HasMethodsInterval
RealNotInt
StrOptions)
_safe_tags)check_is_fitted   )SelectorMixinc                	   @   s   e Zd ZU dZedggedheeddddeeddd	dgdee	ddd	dged
dhgdee
e egdgdegdZeed< ddd
ddddddZedddddZdd Zdd Zdd ZdS )SequentialFeatureSelectora^  Transformer that performs Sequential Feature Selection.

    This Sequential Feature Selector adds (forward selection) or
    removes (backward selection) features to form a feature subset in a
    greedy fashion. At each stage, this estimator chooses the best feature to
    add or remove based on the cross-validation score of an estimator. In
    the case of unsupervised learning, this Sequential Feature Selector
    looks only at the features (X), not the desired outputs (y).

    Read more in the :ref:`User Guide <sequential_feature_selection>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    estimator : estimator instance
        An unfitted estimator.

    n_features_to_select : "auto", int or float, default="auto"
        If `"auto"`, the behaviour depends on the `tol` parameter:

        - if `tol` is not `None`, then features are selected while the score
          change does not exceed `tol`.
        - otherwise, half of the features are selected.

        If integer, the parameter is the absolute number of features to select.
        If float between 0 and 1, it is the fraction of features to select.

        .. versionadded:: 1.1
           The option `"auto"` was added in version 1.1.

        .. versionchanged:: 1.3
           The default changed from `"warn"` to `"auto"` in 1.3.

    tol : float, default=None
        If the score is not incremented by at least `tol` between two
        consecutive feature additions or removals, stop adding or removing.

        `tol` can be negative when removing features using `direction="backward"`.
        It can be useful to reduce the number of features at the cost of a small
        decrease in the score.

        `tol` is enabled only when `n_features_to_select` is `"auto"`.

        .. versionadded:: 1.1

    direction : {'forward', 'backward'}, default='forward'
        Whether to perform forward selection or backward selection.

    scoring : str or callable, default=None
        A single str (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring`) to evaluate the predictions on the test set.

        NOTE that when using a custom scorer, it should return a single
        value.

        If None, the estimator's score method is used.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass,
        :class:`~sklearn.model_selection.StratifiedKFold` is used. In all other
        cases, :class:`~sklearn.model_selection.KFold` is used. These splitters
        are instantiated with `shuffle=False` so the splits will be the same
        across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : int, default=None
        Number of jobs to run in parallel. When evaluating a new feature to
        add or remove, the cross-validation procedure is parallel over the
        folds.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_features_to_select_ : int
        The number of features that were selected.

    support_ : ndarray of shape (n_features,), dtype=bool
        The mask of selected features.

    See Also
    --------
    GenericUnivariateSelect : Univariate feature selector with configurable
        strategy.
    RFE : Recursive feature elimination based on importance weights.
    RFECV : Recursive feature elimination based on importance weights, with
        automatic selection of the number of features.
    SelectFromModel : Feature selection based on thresholds of importance
        weights.

    Examples
    --------
    >>> from sklearn.feature_selection import SequentialFeatureSelector
    >>> from sklearn.neighbors import KNeighborsClassifier
    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> knn = KNeighborsClassifier(n_neighbors=3)
    >>> sfs = SequentialFeatureSelector(knn, n_features_to_select=3)
    >>> sfs.fit(X, y)
    SequentialFeatureSelector(estimator=KNeighborsClassifier(n_neighbors=3),
                              n_features_to_select=3)
    >>> sfs.get_support()
    array([ True, False,  True,  True])
    >>> sfs.transform(X).shape
    (150, 3)
    fitautor   r   right)closedNZneitherforwardbackwardZ	cv_object	estimatorn_features_to_selecttol	directionscoringcvn_jobs_parameter_constraints   )r   r   r    r!   r"   r#   c                C   s.   || _ || _|| _|| _|| _|| _|| _d S Nr   )selfr   r   r   r    r!   r"   r#    r(   d/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/feature_selection/_sequential.py__init__   s    z"SequentialFeatureSelector.__init__F)Zprefer_skip_nested_validationc                 C   s  |   }| j|dd|dd d}|jd }| jdkrZ| jdk	rN|d | _q|d | _nDt| jtr| j|krxt	d	| j| _nt| jt
rt|| j | _| jdk	r| jd
k r| jdkrt	dt| j|t| jd}t| j}tj|td}| jdks
| jdkr| jn|| j }tj }	| jdk	o6| jdk}
t|D ]D}| |||||\}}|
rv||	 | jk rv q|}	d||< q@| jdkr| }|| _| j | _| S )a  Learn the features to select from X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of predictors.

        y : array-like of shape (n_samples,), default=None
            Target values. This parameter may be ignored for
            unsupervised learning.

        Returns
        -------
        self : object
            Returns the instance itself.
        Zcscr   	allow_nanT)Zaccept_sparseZensure_min_featuresZforce_all_finiter   r   Nz*n_features_to_select must be < n_features.r   r   z1tol must be positive when doing forward selection)
classifier)shapeZdtyper   )Z	_get_tagsZ_validate_datagetr-   r   r   Zn_features_to_select_
isinstancer   
ValueErrorr   intr    r   r"   r	   r   r   npZzerosboolinfrange_get_best_new_feature_scoresupport_sum)r'   XytagsZ
n_featuresr"   Zcloned_estimatorcurrent_maskZn_iterationsZ	old_scoreZis_auto_select_new_feature_idxZ	new_scorer(   r(   r)   r      s`    






    zSequentialFeatureSelector.fitc              	      s   t | }i  |D ]T}| }d||< | jdkr8| }|d d |f }	t||	||| j| jd  |< qt  fddd}
|
 |
 fS )NTr   )r"   r!   r#   c                    s    |  S r&   r(   )feature_idxZscoresr(   r)   <lambda>      zGSequentialFeatureSelector._get_best_new_feature_score.<locals>.<lambda>key)	r2   Zflatnonzerocopyr    r   r!   r#   Zmeanmax)r'   r   r9   r:   r"   r<   Zcandidate_feature_indicesr?   Zcandidate_maskZX_newr>   r(   r@   r)   r6   	  s$    
z5SequentialFeatureSelector._get_best_new_feature_scorec                 C   s   t |  | jS r&   )r   r7   r'   r(   r(   r)   _get_support_mask"  s    z+SequentialFeatureSelector._get_support_maskc                 C   s   dt | jddiS )Nr+   rC   )r   r   rG   r(   r(   r)   
_more_tags&  s     z$SequentialFeatureSelector._more_tags)N)__name__
__module____qualname____doc__r   r   r   r   r   r   setr
   callabler$   dict__annotations__r*   r   r   r6   rH   rI   r(   r(   r(   r)   r      s6   
 
Nr   )rM   numbersr   r   numpyr2   baser   r   r   r   r	   Zmetricsr
   Zmodel_selectionr   r   Zutils._param_validationr   r   r   r   Zutils._tagsr   Zutils.validationr   _baser   r   r(   r(   r(   r)   <module>   s   