U
    9%es                     @   sn   d dl mZ d dlZddlmZmZ ddlmZ ddl	m
Z
mZ ddlmZ dd	lmZ G d
d deeZdS )    )RealN   )BaseEstimator_fit_context)Interval)mean_variance_axismin_max_axis)check_is_fitted   )SelectorMixinc                   @   s^   e Zd ZU dZdeeddddgiZeed< dd	d
Z	e
dddddZdd Zdd ZdS )VarianceThresholdat  Feature selector that removes all low-variance features.

    This feature selection algorithm looks only at the features (X), not the
    desired outputs (y), and can thus be used for unsupervised learning.

    Read more in the :ref:`User Guide <variance_threshold>`.

    Parameters
    ----------
    threshold : float, default=0
        Features with a training-set variance lower than this threshold will
        be removed. The default is to keep all features with non-zero variance,
        i.e. remove the features that have the same value in all samples.

    Attributes
    ----------
    variances_ : array, shape (n_features,)
        Variances of individual features.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    SelectFromModel: Meta-transformer for selecting features based on
        importance weights.
    SelectPercentile : Select features according to a percentile of the highest
        scores.
    SequentialFeatureSelector : Transformer that performs Sequential Feature
        Selection.

    Notes
    -----
    Allows NaN in the input.
    Raises ValueError if no feature in X meets the variance threshold.

    Examples
    --------
    The following dataset has integer features, two of which are the same
    in every sample. These are removed with the default setting for threshold::

        >>> from sklearn.feature_selection import VarianceThreshold
        >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
        >>> selector = VarianceThreshold()
        >>> selector.fit_transform(X)
        array([[2, 0],
               [1, 4],
               [1, 1]])
    	thresholdr   Nleft)closed_parameter_constraints        c                 C   s
   || _ d S N)r   )selfr    r   l/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/feature_selection/_variance_threshold.py__init__M   s    zVarianceThreshold.__init__T)Zprefer_skip_nested_validationc           	      C   s   | j |dtjdd}t|drTt|dd\}| _| jdkr|t|dd\}}|| }n(tj|dd| _| jdkr|tj	|dd}| jdkrt
| j|g}tj|dd| _tt| j | j| jkB rd}|jd dkr|d	7 }t|| j| S )
a  Learn empirical variances from X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data from which to compute variances, where `n_samples` is
            the number of samples and `n_features` is the number of features.

        y : any, default=None
            Ignored. This parameter exists only for compatibility with
            sklearn.pipeline.Pipeline.

        Returns
        -------
        self : object
            Returns the instance itself.
        )ZcsrZcscz	allow-nan)Zaccept_sparseZdtypeZforce_all_finiteZtoarrayr   )Zaxisz4No feature in X meets the variance threshold {0:.5f}r
   z (X contains only one sample))Z_validate_datanpZfloat64hasattrr   
variances_r   r   ZnanvarZptparrayZnanminallisfiniteshape
ValueErrorformat)	r   Xy_ZminsZmaxesZpeak_to_peaksZcompare_arrmsgr   r   r   fitP   s.    




 zVarianceThreshold.fitc                 C   s   t |  | j| jkS r   )r	   r   r   r   r   r   r   _get_support_mask   s    z#VarianceThreshold._get_support_maskc                 C   s   ddiS )N	allow_nanTr   r%   r   r   r   
_more_tags   s    zVarianceThreshold._more_tags)r   )N)__name__
__module____qualname____doc__r   r   r   dict__annotations__r   r   r$   r&   r(   r   r   r   r   r      s   
; 
1r   )numbersr   numpyr   baser   r   Zutils._param_validationr   Zutils.sparsefuncsr   r   Zutils.validationr	   _baser   r   r   r   r   r   <module>   s   