U
    9%e4)                     @   s\   d Z ddlZddlmZ ddlmZ ddlmZm	Z	 dd	 Z
d
d ZdddZdddZdS )zwUtilities to get the response values of a classifier or a regressor.

It allows to make uniform checks and validation.
    N   is_classifier   )type_of_target)_check_response_methodcheck_is_fittedc                 C   s   |dkr(| j d dk r(td| j  d|dkrRt||kd }| dd|f S |dkr~t| trztd	d
 | D jS | S | S )a  Get the response values when the response method is `predict_proba`.

    This function process the `y_pred` array in the binary and multi-label cases.
    In the binary case, it selects the column corresponding to the positive
    class. In the multi-label case, it stacks the predictions if they are not
    in the "compressed" format `(n_samples, n_outputs)`.

    Parameters
    ----------
    y_pred : ndarray
        Output of `estimator.predict_proba`. The shape depends on the target type:

        - for binary classification, it is a 2d array of shape `(n_samples, 2)`;
        - for multiclass classification, it is a 2d array of shape
          `(n_samples, n_classes)`;
        - for multilabel classification, it is either a list of 2d arrays of shape
          `(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
          an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
          `RidgeClassifier`).

    target_type : {"binary", "multiclass", "multilabel-indicator"}
        Type of the target.

    classes : ndarray of shape (n_classes,) or list of such arrays
        Class labels as reported by `estimator.classes_`.

    pos_label : int, float, bool or str
        Only used with binary and multiclass targets.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_output)
        Compressed predictions format as requested by the metrics.
    binaryr   r   zGot predict_proba of shape z', but need classifier with two classes.r   Nzmultilabel-indicatorc                 S   s   g | ]}|d d df qS )N ).0pr   r   V/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/utils/_response.py
<listcomp>@   s     z*_process_predict_proba.<locals>.<listcomp>)shape
ValueErrornpZflatnonzero
isinstancelistZvstackT)y_predtarget_typeclasses	pos_labelZcol_idxr   r   r   _process_predict_proba   s    $
r   c                 C   s    |dkr||d krd|  S | S )aw  Get the response values when the response method is `decision_function`.

    This function process the `y_pred` array in the binary and multi-label cases.
    In the binary case, it inverts the sign of the score if the positive label
    is not `classes[1]`. In the multi-label case, it stacks the predictions if
    they are not in the "compressed" format `(n_samples, n_outputs)`.

    Parameters
    ----------
    y_pred : ndarray
        Output of `estimator.predict_proba`. The shape depends on the target type:

        - for binary classification, it is a 1d array of shape `(n_samples,)` where the
          sign is assuming that `classes[1]` is the positive class;
        - for multiclass classification, it is a 2d array of shape
          `(n_samples, n_classes)`;
        - for multilabel classification, it is a 2d array of shape `(n_samples,
          n_outputs)`.

    target_type : {"binary", "multiclass", "multilabel-indicator"}
        Type of the target.

    classes : ndarray of shape (n_classes,) or list of such arrays
        Class labels as reported by `estimator.classes_`.

    pos_label : int, float, bool or str
        Only used with binary and multiclass targets.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_output)
        Compressed predictions format as requested by the metrics.
    r	   r   r
   r   r   r   r   r   r   r   r   _process_decision_functionH   s    #r   c           	      C   s   ddl m} || rt| |}| j}t|}|dkrv|dk	r^|| kr^td| d| n|dkrv|dkrv|d }||}|jd	krt||||d
}q|jdkrt	||||d
}n6|dkrt| j
j d| d| d| |d }}||fS )a	  Compute the response values of a classifier or a regressor.

    The response values are predictions such that it follows the following shape:

    - for binary classification, it is a 1d array of shape `(n_samples,)`;
    - for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
    - for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
    - for regression, it is a 1d array of shape `(n_samples,)`.

    If `estimator` is a binary classifier, also return the label for the
    effective positive class.

    This utility is used primarily in the displays and the scikit-learn scorers.

    .. versionadded:: 1.3

    Parameters
    ----------
    estimator : estimator instance
        Fitted classifier or regressor or a fitted :class:`~sklearn.pipeline.Pipeline`
        in which the last estimator is a classifier or a regressor.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input values.

    response_method : {"predict_proba", "decision_function", "predict"} or             list of such str
        Specifies the response method to use get prediction from an estimator
        (i.e. :term:`predict_proba`, :term:`decision_function` or
        :term:`predict`). Possible choices are:

        - if `str`, it corresponds to the name to the method to return;
        - if a list of `str`, it provides the method names in order of
          preference. The method returned corresponds to the first method in
          the list and which is implemented by `estimator`.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class when computing
        the metrics. By default, `estimators.classes_[1]` is
        considered as the positive class.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_outputs)
        Target scores calculated from the provided `response_method`
        and `pos_label`.

    pos_label : int, float, bool, str or None
        The class considered as the positive class when computing
        the metrics. Returns `None` if `estimator` is a regressor.

    Raises
    ------
    ValueError
        If `pos_label` is not a valid label.
        If the shape of `y_pred` is not consistent for binary classifier.
        If the response method can be applied to a classifier only and
        `estimator` is a regressor.
    r   r   )r	   
multiclassNz
pos_label=z+ is not a valid label: It should be one of r	   r
   predict_probar   decision_functionpredictz? should either be a classifier to be used with response_method=zR or the response_method should be 'predict'. Got a regressor with response_method=	 instead.)Zsklearn.baser   r   classes_r   tolistr   __name__r   r   	__class__r    )		estimatorXresponse_methodr   r   Zprediction_methodr   r   r   r   r   r   _get_response_valuesp   sB    B


r)   c                 C   sv   d}t |  t| s.t|d| jj d n(t| jdkrVt|dt| j d |dkrfddg}t| |||d	S )
a  Compute the response values of a binary classifier.

    Parameters
    ----------
    estimator : estimator instance
        Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
        in which the last estimator is a binary classifier.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input values.

    response_method : {'auto', 'predict_proba', 'decision_function'}
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. If set to 'auto',
        :term:`predict_proba` is tried first and if it does not exist
        :term:`decision_function` is tried next.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class when computing
        the metrics. By default, `estimators.classes_[1]` is
        considered as the positive class.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,)
        Target scores calculated from the provided response_method
        and pos_label.

    pos_label : int, float, bool or str
        The class considered as the positive class when computing
        the metrics.
    z/Expected 'estimator' to be a binary classifier.z Got r!   r   z classes instead.autor   r   )r   )r   r   r   r%   r$   lenr"   r)   )r&   r'   r(   r   Zclassification_errorr   r   r   _get_response_values_binary   s$    !r,   )N)N)__doc__numpyr   baser   r   r   Z
validationr   r   r   r   r)   r,   r   r   r   r   <module>   s   <, 
o