U
    9%eK                     @   s  d dl Zd dlmZ ddlmZ ddlmZ	 ddlm
Z ddlmZ dd	 Zd
d Zdd Zdd Zd6ddZddddZdd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zd$d% Zd&d' Zd(d) Zd*d+ Zd7d,d-Zd8d.d/Z d0d1 Z!d2d3 Z"d4d5 Z#dS )9    N   )_check_sample_weight   )csc_mean_variance_axis0)csr_mean_variance_axis0)incr_mean_variance_axis0c                 C   s,   t | r| jnt| }d| }t|dS )z2Raises a TypeError if X is not a CSR or CSC matrixz,Expected a CSR or CSC sparse matrix, got %s.N)spissparseformattype	TypeError)XZ
input_typeerr r   X/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sklearn/utils/sparsefuncs.py_raise_typeerror   s    r   c                 C   s   | dkrt d|  d S )N)r   r   z8Unknown axis value: %d. Use 0 for rows, or 1 for columns)
ValueErroraxisr   r   r   _raise_error_wrong_axis   s    r   c                 C   s6   |j d | j d kst|  j|j| jdd9  _dS )a
  Inplace column scaling of a CSR matrix.

    Scale each feature of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to normalize using the variance of the features.
        It should be of CSR format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed feature-wise values to use for scaling.
    r   r   Zclip)modeN)shapeAssertionErrordataZtakeindicesr   scaler   r   r   inplace_csr_column_scale#   s    r   c                 C   s:   |j d | j d kst|  jt|t| j9  _dS )a  Inplace row scaling of a CSR matrix.

    Scale each sample of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to be scaled. It should be of CSR format.

    scale : ndarray of float of shape (n_samples,)
        Array of precomputed sample-wise values to use for scaling.
    r   N)r   r   r   nprepeatdiffindptrr   r   r   r   inplace_csr_row_scale6   s    r"   Fc                 C   s   t | t| rD| jdkrD|dkr2t| ||dS t| j||dS nDt| r| jdkr|dkrnt| ||dS t| j||dS nt|  dS )a4  Compute mean and variance along an axis on a CSR or CSC matrix.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It can be of CSR or CSC format.

    axis : {0, 1}
        Axis along which the axis should be computed.

    weights : ndarray of shape (n_samples,) or (n_features,), default=None
        If axis is set to 0 shape is (n_samples,) or
        if axis is set to 1 shape is (n_features,).
        If it is set to None, then samples are equally weighted.

        .. versionadded:: 0.24

    return_sum_weights : bool, default=False
        If True, returns the sum of weights seen for each feature
        if `axis=0` or each sample if `axis=1`.

        .. versionadded:: 0.24

    Returns
    -------

    means : ndarray of shape (n_features,), dtype=floating
        Feature-wise means.

    variances : ndarray of shape (n_features,), dtype=floating
        Feature-wise variances.

    sum_weights : ndarray of shape (n_features,), dtype=floating
        Returned if `return_sum_weights` is `True`.
    csrr   )weightsreturn_sum_weightscscN)r   r   r	   r
   _csr_mean_var_axis0_csc_mean_var_axis0Tr   )r   r   r$   r%   r   r   r   mean_variance_axisH   s4    $        r*   )r$   c                C   s*  t | t| r| jdks$t|  t|dkrFtj|j||j	d}t|t|  krlt|ksvn t
d|dkrt|| jd krt
d| jd  dt| dn6t|| jd krt
d	| jd  dt| d|dkr| jn| } |d
k	rt|| | j	d}t| ||||dS )a7	  Compute incremental mean and variance along an axis on a CSR or CSC matrix.

    last_mean, last_var are the statistics computed at the last step by this
    function. Both must be initialized to 0-arrays of the proper size, i.e.
    the number of features in X. last_n is the number of samples encountered
    until now.

    Parameters
    ----------
    X : CSR or CSC sparse matrix of shape (n_samples, n_features)
        Input data.

    axis : {0, 1}
        Axis along which the axis should be computed.

    last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Array of means to update with the new data X.
        Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

    last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Array of variances to update with the new data X.
        Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

    last_n : float or ndarray of shape (n_features,) or (n_samples,),             dtype=floating
        Sum of the weights seen so far, excluding the current weights
        If not float, it should be of shape (n_features,) if
        axis=0 or (n_samples,) if axis=1. If float it corresponds to
        having same weights for all samples (or features).

    weights : ndarray of shape (n_samples,) or (n_features,), default=None
        If axis is set to 0 shape is (n_samples,) or
        if axis is set to 1 shape is (n_features,).
        If it is set to None, then samples are equally weighted.

        .. versionadded:: 0.24

    Returns
    -------
    means : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Updated feature-wise means if axis = 0 or
        sample-wise means if axis = 1.

    variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Updated feature-wise variances if axis = 0 or
        sample-wise variances if axis = 1.

    n : ndarray of shape (n_features,) or (n_samples,), dtype=integral
        Updated number of seen samples per feature if axis=0
        or number of seen features per sample if axis=1.

        If weights is not None, n is a sum of the weights of the seen
        samples or features instead of the actual number of seen
        samples or features.

    Notes
    -----
    NaNs are ignored in the algorithm.
    )r&   r#   r   )dtypez8last_mean, last_var, last_n do not have the same shapes.r   zHIf axis=1, then last_mean, last_n, last_var should be of size n_samples z (Got z).zIIf axis=0, then last_mean, last_n, last_var should be of size n_features N)	last_meanlast_varlast_nr$   )r   r   r	   r
   r   r   sizefullr   r+   r   r)   r   _incr_mean_var_axis0)r   r   r,   r-   r.   r$   r   r   r   incr_mean_variance_axis   s4    <(
    r2   c                 C   sN   t | r"| jdkr"t| j| n(t | rB| jdkrBt| | nt|  dS )a  Inplace column scaling of a CSC/CSR matrix.

    Scale each feature of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to normalize using the variance of the features. It should be
        of CSC or CSR format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed feature-wise values to use for scaling.
    r&   r#   N)r   r	   r
   r"   r)   r   r   r   r   r   r   inplace_column_scale   s
    r3   c                 C   sN   t | r"| jdkr"t| j| n(t | rB| jdkrBt| | nt|  dS )a  Inplace row scaling of a CSR or CSC matrix.

    Scale each row of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to be scaled. It should be of CSR or CSC format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed sample-wise values to use for scaling.
    r&   r#   N)r   r	   r
   r   r)   r"   r   r   r   r   r   inplace_row_scale   s
    r4   c                 C   sv   ||fD ]}t |tjrtdq|dk r8|| jd 7 }|dk rN|| jd 7 }| j|k}|| j| j|k< || j|< dS )aK  Swap two rows of a CSC matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of
        CSC format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
     m and n should be valid integersr   N)
isinstancer   ndarrayr   r   r   )r   mntZm_maskr   r   r   inplace_swap_row_csc  s    

r;   c              	   C   sx  ||fD ]}t |tjrtdq|dk r8|| jd 7 }|dk rN|| jd 7 }||kr`|| }}| j}|| }||d  }|| }||d  }|| }	|| }
|	|
kr| j|d |  |
|	 7  < ||
 | j|d < ||	 | j|< t| jd| | j|| | j|| | j|| | j|d g| _t| jd| | j|| | j|| | j|| | j|d g| _dS )aK  Swap two rows of a CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of
        CSR format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
    r5   r   r   r   N)	r6   r   r7   r   r   r!   Zconcatenater   r   )r   r8   r9   r:   r!   Zm_startZm_stopZn_startZn_stopZnz_mZnz_nr   r   r   inplace_swap_row_csr,  sH    

	r<   c                 C   sP   t | r"| jdkr"t| || n*t | rD| jdkrDt| || nt|  dS )a[  
    Swap two rows of a CSC/CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of CSR or
        CSC format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
    r&   r#   N)r   r	   r
   r;   r<   r   r   r8   r9   r   r   r   inplace_swap_rowk  s
    r>   c                 C   s|   |dk r|| j d 7 }|dk r,|| j d 7 }t| rN| jdkrNt| || n*t| rp| jdkrpt| || nt|  dS )ag  
    Swap two columns of a CSC/CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two columns are to be swapped. It should be of
        CSR or CSC format.

    m : int
        Index of the column of X to be swapped.

    n : int
        Index of the column of X to be swapped.
    r   r   r&   r#   N)r   r   r	   r
   r<   r;   r   r=   r   r   r   inplace_swap_column  s    r?   c                 C   sL   t t | j}t| | j| j| jf| jd} || j| j| }||fS )N)r   )	r   Zflatnonzeror    r!   r   r   r   r   Zreduceat)r   Zufuncmajor_indexvaluer   r   r   _minor_reduce  s    rB   c                 C   s   | j | }|dkrtd| j d|  }|dkr8|  n|  }|  t||\}}t|j| |k }||| d||< |dk}	t	|	|}t	|	|}|dkrt
j|tt||ff| jd|fd}
n(t
j||tt|ff| j|dfd}
|
j S )Nr   &zero-size array to reduction operationr   )r+   r   )r   r   ZtocscZtocsrZsum_duplicatesrB   r   r    r!   compressr   Z
coo_matrixzeroslenr+   Aravel)r   r   
min_or_maxNMmatr@   rA   not_fullmaskresr   r   r   _min_or_max_axis  s0    
    rP   c                 C   s   |d krdd| j krtd| jd}| jdkr4|S || j }| jt	| j kr`|||}|S |dk rt|d7 }|dks|dkrt
| ||S tdd S )Nr   rC   r   r   z.invalid axis, use 0 for rows, or 1 for columns)r   r   r+   r   nnzreducer   rH   r   prodrP   )r   r   rI   zeror8   r   r   r   _sparse_min_or_max  s    


rU   c                 C   s   t | |tjt | |tjfS N)rU   r   minimummaximumr   r   r   r   r   _sparse_min_max  s    rZ   c                 C   s   t | |tjt | |tjfS rV   )rU   r   ZfminZfmaxrY   r   r   r   _sparse_nan_min_max  s    r[   c                 C   s>   t | r2| jdkr2|r$t| |dS t| |dS nt|  dS )a  Compute minimum and maximum along an axis on a CSR or CSC matrix.

     Optionally ignore NaN values.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It should be of CSR or CSC format.

    axis : {0, 1}
        Axis along which the axis should be computed.

    ignore_nan : bool, default=False
        Ignore or passing through NaN values.

        .. versionadded:: 0.20

    Returns
    -------

    mins : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Feature-wise minima.

    maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Feature-wise maxima.
    )r#   r&   r   N)r   r	   r
   r[   rZ   r   )r   r   Z
ignore_nanr   r   r   min_max_axis  s
    r\   c                 C   s   |dkrd}n(|dkrd}n| j dkr6td | j |dkrb|dkrL| jS tt| j|S n|dkrt| j}|dkr|dS || S |dkr|dkrtj| j	| j
d d	S t|t| j}tj| j	| j
d |d
S ntd |dS )a  A variant of X.getnnz() with extension to weighting on axis 0.

    Useful in efficiently calculating multilabel metrics.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_labels)
        Input data. It should be of CSR format.

    axis : {0, 1}, default=None
        The axis on which the data is aggregated.

    sample_weight : array-like of shape (n_samples,), default=None
        Weight for each row of X.

    Returns
    -------
    nnz : int, float, ndarray of shape (n_samples,) or ndarray of shape (n_features,)
        Number of non-zero values in the array along a given axis. Otherwise,
        the total number of non-zero values in the array is returned.
    r   r   r#   z#Expected CSR sparse format, got {0}NZintp)	minlength)r_   r$   zUnsupported axis: {0})r
   r   rQ   r   dotr    r!   ZastypeZbincountr   r   r   r   )r   r   Zsample_weightoutr$   r   r   r   count_nonzero  s*    

rb   c                 C   sp   t | | }|stjS t| dk }t|d\}}|   |rLt|| ||S t|d | ||t|| || d S )zCompute the median of data with n_zeros additional zeros.

    This function is used to support sparse matrices; it modifies data
    in-place.
    r   r   r   g       @)rF   r   nanrb   divmodsort_get_elem_at_rank)r   n_zerosZn_elems
n_negativemiddleZis_oddr   r   r   _get_median;  s    rj   c                 C   s,   | |k r||  S | | |k r dS || |  S )z@Find the value in data augmented with n_zeros for the given rankr   r   )Zrankr   rh   rg   r   r   r   rf   Q  s
    rf   c           
      C   s   t | r| jdks"td| j | j}| j\}}t|}tt	|dd |dd D ]8\}\}}t
| j|| }||j }	t||	||< qZ|S )aC  Find the median across axis 0 of a CSC matrix.

    It is equivalent to doing np.median(X, axis=0).

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It should be of CSC format.

    Returns
    -------
    median : ndarray of shape (n_features,)
        Median.
    r&   z%Expected matrix of CSC format, got %sNr]   r   )r   r	   r
   r   r!   r   r   rE   	enumeratezipcopyr   r/   rj   )
r   r!   Z	n_samplesZ
n_featuresZmedianZf_indstartendr   Znzr   r   r   csc_median_axis_0Z  s    

*
rp   )NF)F)NN)$numpyr   Zscipy.sparsesparser   Zutils.validationr   Zsparsefuncs_fastr   r(   r   r'   r   r1   r   r   r   r"   r*   r2   r3   r4   r;   r<   r>   r?   rB   rP   rU   rZ   r[   r\   rb   rj   rf   rp   r   r   r   r   <module>   s6   
<^?
$
6	