U
    9%e	                     @   s\   d dl mZ d dlmZ G dd deZG dd deZG dd deZG d	d
 d
eZdS )    )	Predicate)
Dispatcherc                   @   s    e Zd ZdZdZedddZdS )PrimePredicatea  
    Prime number predicate.

    Explanation
    ===========

    ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater
    than 1 that has no positive divisors other than ``1`` and the
    number itself.

    Examples
    ========

    >>> from sympy import Q, ask
    >>> ask(Q.prime(0))
    False
    >>> ask(Q.prime(1))
    False
    >>> ask(Q.prime(2))
    True
    >>> ask(Q.prime(20))
    False
    >>> ask(Q.prime(-3))
    False

    primeZPrimeHandlerzHandler for key 'prime'. Test that an expression represents a prime number. When the expression is an exact number, the result (when True) is subject to the limitations of isprime() which is used to return the result.docN__name__
__module____qualname____doc__namer   handler r   r   c/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/assumptions/predicates/ntheory.pyr      s   r   c                   @   s    e Zd ZdZdZedddZdS )CompositePredicatea  
    Composite number predicate.

    Explanation
    ===========

    ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has
    at least one positive divisor other than ``1`` and the number itself.

    Examples
    ========

    >>> from sympy import Q, ask
    >>> ask(Q.composite(0))
    False
    >>> ask(Q.composite(1))
    False
    >>> ask(Q.composite(2))
    False
    >>> ask(Q.composite(20))
    True

    Z	compositeZCompositeHandlerzHandler for key 'composite'.r   Nr   r   r   r   r   r   *   s   r   c                   @   s    e Zd ZdZdZedddZdS )EvenPredicateaY  
    Even number predicate.

    Explanation
    ===========

    ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even
    integers.

    Examples
    ========

    >>> from sympy import Q, ask, pi
    >>> ask(Q.even(0))
    True
    >>> ask(Q.even(2))
    True
    >>> ask(Q.even(3))
    False
    >>> ask(Q.even(pi))
    False

    ZevenZEvenHandlerzHandler for key 'even'.r   Nr   r   r   r   r   r   F   s   r   c                   @   s    e Zd ZdZdZedddZdS )OddPredicateaN  
    Odd number predicate.

    Explanation
    ===========

    ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers.

    Examples
    ========

    >>> from sympy import Q, ask, pi
    >>> ask(Q.odd(0))
    False
    >>> ask(Q.odd(2))
    False
    >>> ask(Q.odd(3))
    True
    >>> ask(Q.odd(pi))
    False

    ZoddZ
OddHandlerzHHandler for key 'odd'. Test that an expression represents an odd number.r   Nr   r   r   r   r   r   b   s   r   N)Zsympy.assumptionsr   Zsympy.multipledispatchr   r   r   r   r   r   r   r   r   <module>   s
   %