U
    —9%eµ  ã                   @   sV   d Z ddlmZmZmZ ddlmZmZmZ ddl	m
Z
 ddd„Zdd	„ Zd
d„ ZdS )z1Gosper's algorithm for hypergeometric summation. é    )ÚSÚDummyÚsymbols)ÚPolyÚparallel_poly_from_exprÚfactor)Úis_sequenceTc                 C   sH  t | |f|ddd\\}}}| ¡ | ¡  }}| ¡ | ¡  }	}
|j||	  }}tdƒ}t|| |||jd}| |
 |¡¡}t	| 
¡  ¡ ƒ}t	|ƒD ]}|jr¨|dk r–| |¡ q–t|ƒD ]X}| |
 |
 ¡¡}| |¡}|
 | | ¡¡}
td|d ƒD ]}|| | ¡9 } qüq¼| |¡}|s>| ¡ }|
 ¡ }
| ¡ }||
|fS )a`  
    Compute the Gosper's normal form of ``f`` and ``g``.

    Explanation
    ===========

    Given relatively prime univariate polynomials ``f`` and ``g``,
    rewrite their quotient to a normal form defined as follows:

    .. math::
        \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}

    where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
    monic polynomials in ``n`` with the following properties:

    1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
    2. `\gcd(B(n), C(n+1)) = 1`
    3. `\gcd(A(n), C(n)) = 1`

    This normal form, or rational factorization in other words, is a
    crucial step in Gosper's algorithm and in solving of difference
    equations. It can be also used to decide if two hypergeometric
    terms are similar or not.

    This procedure will return a tuple containing elements of this
    factorization in the form ``(Z*A, B, C)``.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_normal
    >>> from sympy.abc import n

    >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
    (1/4, n + 3/2, n + 1/4)

    T)ÚfieldÚ	extensionÚh©Údomainr   é   )r   ÚLCZmonicÚoner   r   r   Z	resultantZcomposeÚsetZground_rootsÚkeysÚ
is_IntegerÚremoveÚsortedÚgcdÚshiftZquoÚrangeZ
mul_groundÚas_expr)ÚfÚgÚnZpolysÚpÚqÚoptÚaÚAÚbÚBÚCÚZr   ÚDÚRÚrootsÚrÚiÚdÚj© r-   úT/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/concrete/gosper.pyÚgosper_normal   s8    &   ÿ

r/   c                 C   sÞ  ddl m} || |ƒ}|dkr"dS | ¡ \}}t|||ƒ\}}}| d¡}t| ¡ ƒ}	t| ¡ ƒ}
t| ¡ ƒ}|	|
ks†| ¡ | ¡ kr˜|t|	|
ƒ h}nH|	s°||	 d tj	h}n0||	 d | 
|	d ¡| 
|	d ¡ | ¡  h}t|ƒD ]}|jrú|dk rè| |¡ qè|sdS t|ƒ}td|d  td}| ¡ j|Ž }t|||d}|| d¡ ||  | }dd	lm} || ¡ |ƒ}|dkrŠdS | ¡  |¡}|D ]}||krœ| |d¡}qœ|jrÆdS | ¡ | | ¡  S dS )
a&  
    Compute Gosper's hypergeometric term for ``f``.

    Explanation
    ===========

    Suppose ``f`` is a hypergeometric term such that:

    .. math::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f_k` does not depend on `n`. Returns a hypergeometric
    term `g_n` such that `g_{n+1} - g_n = f_n`.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_term
    >>> from sympy import factorial
    >>> from sympy.abc import n

    >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
    (-n - 1/2)/(n + 1/4)

    r   )Ú	hypersimpNéÿÿÿÿr   zc:%s)Úclsr   )Úsolve)Zsympy.simplifyr0   Zas_numer_denomr/   r   r   Zdegreer   ÚmaxZZeroZnthr   r   r   r   r   Z
get_domainZinjectr   Zsympy.solvers.solversr3   Úcoeffsr   ÚsubsÚis_zero)r   r   r0   r)   r   r   r!   r#   r$   ÚNÚMÚKr&   r+   r5   r   ÚxÚHr3   ZsolutionZcoeffr-   r-   r.   Úgosper_termS   sH    

0

r=   c                 C   s¸   d}t |ƒr|\}}}nd}t| |ƒ}|dkr2dS |r@| | }np| |d   ||¡| |  ||¡ }|tjkr°z(| |d   ||¡| |  ||¡ }W n tk
r®   d}Y nX t|ƒS )aB  
    Gosper's hypergeometric summation algorithm.

    Explanation
    ===========

    Given a hypergeometric term ``f`` such that:

    .. math ::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
    `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
    in closed form as a sum of hypergeometric terms.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_sum
    >>> from sympy import factorial
    >>> from sympy.abc import n, k

    >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
    >>> gosper_sum(f, (k, 0, n))
    (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
    >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
    True
    >>> gosper_sum(f, (k, 3, n))
    (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
    >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
    True

    References
    ==========

    .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
           AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100

    FTNr   )r   r=   r6   r   ÚNaNÚlimitÚNotImplementedErrorr   )r   ÚkZ
indefiniter    r"   r   Úresultr-   r-   r.   Ú
gosper_sum¤   s     (

$
(
rC   N)T)Ú__doc__Z
sympy.corer   r   r   Zsympy.polysr   r   r   Zsympy.utilities.iterablesr   r/   r=   rC   r-   r-   r-   r.   Ú<module>   s   
KQ