U
    9%e*                     @   s   d dl mZ ddlmZmZmZmZ ddlmZ dddZ	ddd	Z
efd
dZeddfddZedfddZedddfddZdS )    )FunctionType   )_get_intermediate_simp_iszero_dotprodsimp	_simplify)_find_reasonable_pivotTc	                    sD   fdd}	 fdd}
 fdd}t td\}}g }g }| k r||k rt|	||d ||\}}}}|D ] \}}||7 }||  | < q||dkr|d	7 }qD|| |d
kr|
|||  |||| f |dkrD|| }}||  | < t|  | d	 |d	   D ]}| | |< q$|}t|D ]X}||kr^qL|dkrv||k rvqL|  |  }||rqL||||| qL|d	7 }qD|dkr2|dkr2t|D ]d\}}|  |  }||  | < t|  | d	 |d	   D ]}| | |< qq̈t|t|fS )a  Row reduce a flat list representation of a matrix and return a tuple
    (rref_matrix, pivot_cols, swaps) where ``rref_matrix`` is a flat list,
    ``pivot_cols`` are the pivot columns and ``swaps`` are any row swaps that
    were used in the process of row reduction.

    Parameters
    ==========

    mat : list
        list of matrix elements, must be ``rows`` * ``cols`` in length

    rows, cols : integer
        number of rows and columns in flat list representation

    one : SymPy object
        represents the value one, from ``Matrix.one``

    iszerofunc : determines if an entry can be used as a pivot

    simpfunc : used to simplify elements and test if they are
        zero if ``iszerofunc`` returns `None`

    normalize_last : indicates where all row reduction should
        happen in a fraction-free manner and then the rows are
        normalized (so that the pivots are 1), or whether
        rows should be normalized along the way (like the naive
        row reduction algorithm)

    normalize : whether pivot rows should be normalized so that
        the pivot value is 1

    zero_above : whether entries above the pivot should be zeroed.
        If ``zero_above=False``, an echelon matrix will be returned.
    c                    s   | d   S N icolsmatr
   X/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/matrices/reductions.pyget_col,   s    z!_row_reduce_list.<locals>.get_colc                    s^   |  |d    |   | d     |   | d   < |  |d   < d S )Nr   r
   )r   jr   r
   r   row_swap/   s    .z"_row_reduce_list.<locals>.row_swapc                    sP   ||   }t |  |d   D ](}| |  |||    |< q"dS )z,Does the row op row[i] = a*row[i] - b*row[j]r   N)range)ar   br   qpr   Zisimpr   r
   r   cross_cancel3   s    z&_row_reduce_list.<locals>.cross_cancelr   r   Nr   r   FT)r   r   r   appendr   	enumeratetuple)r   rowsr   one
iszerofuncsimpfuncnormalize_last	normalize
zero_abover   r   r   Zpiv_rowZpiv_col
pivot_colsswapsZpivot_offsetZ	pivot_valZassumed_nonzeroZnewly_determinedoffsetvalr   r   r   rowZpiv_iZpiv_jr
   r   r   _row_reduce_list   sb    %   


"


"r+   c           	      C   sB   t t| | j| j| j|||||d	\}}}| | j| j|||fS )Nr#   r$   r%   )r+   listr   r   r    _new)	Mr!   r"   r#   r$   r%   r   r&   r'   r
   r
   r   _row_reducey   s       r0   c                    s   | j dks| jdkrdS t fdd| dddf D } | d rd|obt| ddddf  S |ot| ddddf  S )zReturns `True` if the matrix is in echelon form. That is, all rows of
    zeros are at the bottom, and below each leading non-zero in a row are
    exclusively zeros.r   Tc                 3   s   | ]} |V  qd S r	   r
   ).0tr!   r
   r   	<genexpr>   s     z_is_echelon.<locals>.<genexpr>r   Nr   )r   r   all_is_echelon)r/   r!   Zzeros_belowr
   r3   r   r6      s    "r6   Fc                 C   s<   t |tr|nt}t| ||dddd\}}}|r8||fS |S )an  Returns a matrix row-equivalent to ``M`` that is in echelon form. Note
    that echelon form of a matrix is *not* unique, however, properties like the
    row space and the null space are preserved.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> M.echelon_form()
    Matrix([
    [1,  2],
    [0, -2]])
    TFr,   
isinstancer   r   r0   )r/   r!   simplifyZwith_pivotsr"   r   pivots_r
   r
   r   _echelon_form   s      r<   c           
         s   dd }t |tr|nt}| jdks.| jdkr2dS | jdksF| jdkrd fdd| D }d|krddS | jdkr| jdkrʇ fd	d| D }d|krd
|krdS |  } |rd|krdS  |dkrdS ||  d\}}t| |dddd\}}	}t|	S )zReturns the rank of a matrix.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.abc import x
    >>> m = Matrix([[1, 2], [x, 1 - 1/x]])
    >>> m.rank()
    2
    >>> n = Matrix(3, 3, range(1, 10))
    >>> n.rank()
    2
    c                    sJ    fddfddt  jD }dd t|D } j|dd|fS )a  Permute columns with complicated elements as
        far right as they can go.  Since the ``sympy`` row reduction
        algorithms start on the left, having complexity right-shifted
        speeds things up.

        Returns a tuple (mat, perm) where perm is a permutation
        of the columns to perform to shift the complex columns right, and mat
        is the permuted matrix.c                    s"   t fdd d d | f D S )Nc                 3   s"   | ]} |d krdndV  qd S )Nr   r   r
   )r1   er3   r
   r   r4      s     zO_rank.<locals>._permute_complexity_right.<locals>.complexity.<locals>.<genexpr>)sumr   )r/   r!   r
   r   
complexity   s    z<_rank.<locals>._permute_complexity_right.<locals>.complexityc                    s   g | ]} ||fqS r
   r
   )r1   r   )r?   r
   r   
<listcomp>   s     z<_rank.<locals>._permute_complexity_right.<locals>.<listcomp>c                 S   s   g | ]\}}|qS r
   r
   )r1   r   r   r
   r
   r   r@      s     r   )Zorientation)r   r   sortedZpermute)r/   r!   complexpermr
   )r/   r?   r!   r   _permute_complexity_right   s    
z(_rank.<locals>._permute_complexity_rightr   r   c                    s   g | ]} |qS r
   r
   r1   xr3   r
   r   r@      s     z_rank.<locals>.<listcomp>F   c                    s   g | ]} |qS r
   r
   rE   r3   r
   r   r@      s     Nr3   Tr,   )r8   r   r   r   r   Zdetr0   len)
r/   r!   r9   rD   r"   Zzerosdr   r;   r:   r
   r3   r   _rank   s.    
 rJ   c           	      C   s<   t |tr|nt}t| |||ddd\}}}|r8||f}|S )a'	  Return reduced row-echelon form of matrix and indices of pivot vars.

    Parameters
    ==========

    iszerofunc : Function
        A function used for detecting whether an element can
        act as a pivot.  ``lambda x: x.is_zero`` is used by default.

    simplify : Function
        A function used to simplify elements when looking for a pivot.
        By default SymPy's ``simplify`` is used.

    pivots : True or False
        If ``True``, a tuple containing the row-reduced matrix and a tuple
        of pivot columns is returned.  If ``False`` just the row-reduced
        matrix is returned.

    normalize_last : True or False
        If ``True``, no pivots are normalized to `1` until after all
        entries above and below each pivot are zeroed.  This means the row
        reduction algorithm is fraction free until the very last step.
        If ``False``, the naive row reduction procedure is used where
        each pivot is normalized to be `1` before row operations are
        used to zero above and below the pivot.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.abc import x
    >>> m = Matrix([[1, 2], [x, 1 - 1/x]])
    >>> m.rref()
    (Matrix([
    [1, 0],
    [0, 1]]), (0, 1))
    >>> rref_matrix, rref_pivots = m.rref()
    >>> rref_matrix
    Matrix([
    [1, 0],
    [0, 1]])
    >>> rref_pivots
    (0, 1)

    ``iszerofunc`` can correct rounding errors in matrices with float
    values. In the following example, calling ``rref()`` leads to
    floating point errors, incorrectly row reducing the matrix.
    ``iszerofunc= lambda x: abs(x)<1e-9`` sets sufficiently small numbers
    to zero, avoiding this error.

    >>> m = Matrix([[0.9, -0.1, -0.2, 0], [-0.8, 0.9, -0.4, 0], [-0.1, -0.8, 0.6, 0]])
    >>> m.rref()
    (Matrix([
    [1, 0, 0, 0],
    [0, 1, 0, 0],
    [0, 0, 1, 0]]), (0, 1, 2))
    >>> m.rref(iszerofunc=lambda x:abs(x)<1e-9)
    (Matrix([
    [1, 0, -0.301369863013699, 0],
    [0, 1, -0.712328767123288, 0],
    [0, 0,         0,          0]]), (0, 1))

    Notes
    =====

    The default value of ``normalize_last=True`` can provide significant
    speedup to row reduction, especially on matrices with symbols.  However,
    if you depend on the form row reduction algorithm leaves entries
    of the matrix, set ``noramlize_last=False``
    T)r$   r%   r7   )	r/   r!   r9   r:   r#   r"   r   r&   r;   r
   r
   r   _rref   s    I  rK   N)TTT)TTT)typesr   Z	utilitiesr   r   r   r   Zdeterminantr   r+   r0   r6   r<   rJ   rK   r
   r
   r
   r   <module>   s         
r    

F