U
    9%eJ                     @   s^  d Z ddlZddlmZmZmZ ddlmZmZm	Z	 ddl
mZ ddlmZmZmZmZ ddlmZmZmZmZ ddlmZ dd	lmZ dd
lmZmZ ddlmZ ddlm Z m!Z!m"Z" ddl#m$Z$ ddl%m&Z&m'Z' ddl(m)Z)m*Z* ddl+m,Z, dd Z-dd Z.dd Z/d)ddZ0dd Z1dd Z2dej3dfdd Z4d!d" Z5d*d#d$Z6d%d& Z7g fd'd(Z8dS )+z<Tools for solving inequalities and systems of inequalities.     N)continuous_domainperiodicityfunction_range)SymbolDummysympify)factor_terms)
RelationalEqGeLt)Interval	FiniteSetUnionIntersection)S)
expand_mul)imAbsAnd)PolyPolynomialErrorparallel_poly_from_expr)_nsort)solvifysolveset)siftiterable)
filldedentc              	   C   s2  t | tstd|  jr\t|  d|}|tjkr>tjgS |tj	krPtj
gS td| | jddg  }}|dkr|D ]\}}t||}|| qzn|dkrtj}|tjdfg D ]$\}	}t||	d	d	}|| |	}qnJ|  dkrd}
nd
}
d\}}|dkrd}nD|dkr"d
}n4|dkr6d\}}n |dkrJd\}}ntd| tjd	 }	}t|D ]\}}|d r|
|kr|dt||	| | |
 ||   }
}	}nT|
|kr|s|dt||	d	| |d	 }	}n"|
|krj|rj|dt|| qj|
|kr.|dttj|	d	| |S )a  Solve a polynomial inequality with rational coefficients.

    Examples
    ========

    >>> from sympy import solve_poly_inequality, Poly
    >>> from sympy.abc import x

    >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
    [{0}]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
    [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
    [{-1}, {1}]

    See Also
    ========
    solve_poly_inequalities
    z8For efficiency reasons, `poly` should be a Poly instancer   %could not determine truth value of %sF)Zmultiple==!=   T)NF><>=)r#   T<=)r$   Tz'%s' is not a valid relation   )
isinstancer   
ValueErroras_expr	is_numberr	   r   trueRealsfalseEmptySetNotImplementedErrorZ
real_rootsr   appendNegativeInfinityInfinityZLCreversedinsert)Zpolyreltreals	intervalsroot_intervalleftrightsignZeq_signequalZ
right_openZmultiplicity rC   Y/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/solvers/inequalities.pysolve_poly_inequality   sx    














  
 rE   c                 C   s   t dd | D  S )a  Solve polynomial inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly
    >>> from sympy.solvers.inequalities import solve_poly_inequalities
    >>> from sympy.abc import x
    >>> solve_poly_inequalities(((
    ... Poly(x**2 - 3), ">"), (
    ... Poly(-x**2 + 1), ">")))
    Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
    c                 S   s   g | ]}t | D ]}|qqS rC   )rE   ).0psrC   rC   rD   
<listcomp>~   s     
  z+solve_poly_inequalities.<locals>.<listcomp>)r   )ZpolysrC   rC   rD   solve_poly_inequalitiesp   s    rJ   c                 C   s   t j}| D ]}|sq
tt jt jg}|D ]\\}}}t|| |}t|d}g }	t||D ]&\}
}|
|}|t jk	r\|		| q\|	}g }	|D ]*}|D ]}||8 }q|t jk	r|		| q|	}|s( qq(|D ]}|
|}qq
|S )a3  Solve a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import solve_rational_inequalities, Poly

    >>> solve_rational_inequalities([[
    ... ((Poly(-x + 1), Poly(1, x)), '>='),
    ... ((Poly(-x + 1), Poly(1, x)), '<=')]])
    {1}

    >>> solve_rational_inequalities([[
    ... ((Poly(x), Poly(1, x)), '!='),
    ... ((Poly(-x + 1), Poly(1, x)), '>=')]])
    Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))

    See Also
    ========
    solve_poly_inequality
    r!   )r   r1   r   r4   r5   rE   	itertoolsproduct	intersectr3   union)eqsresult_eqsZglobal_intervalsnumerdenomr8   Znumer_intervalsZdenom_intervalsr;   Znumer_intervalZglobal_intervalr>   Zdenom_intervalrC   rC   rD   solve_rational_inequalities   s:    
 



rT   Tc              
      s  d}g }| rt jnt j}| D ]^}g }|D ]@}t|trD|\}}	n&|jr`|j|j |j }}	n
|d }}	|t j	krt j
t jd  }
}}	n0|t jkrt jt jd  }
}}	n|  \}
}zt|
|f \\}
}}W n  tk
r   ttdY nX |jjs|
 | d  }
}}|j }|jsZ|jsZ|
| }t|d|	}|t| ddM }q*||
|f|	f q*|r|| q|r|t|M }t fdd|D g}||8 }|s|r| }|r| }|S )	a8  Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    -2 < x
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    -2 < x
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)

    This function find the non-infinite solution set so if the unknown symbol
    is declared as extended real rather than real then the result may include
    finiteness conditions:

    >>> y = Symbol('y', extended_real=True)
    >>> reduce_rational_inequalities([[y + 2 > 0]], y)
    (-2 < y) & (y < oo)
    Tr!   z
                    only polynomials and rational functions are
                    supported in this context.
                    Fr   )
relationalc                    s6   g | ].}|D ]$\\}}}|  r||jfd fqqS )r!   )hasone)rF   indr=   genrC   rD   rI     s
     
 
z0reduce_rational_inequalities.<locals>.<listcomp>)r   r/   r1   r*   tupleZis_Relationallhsrhsrel_opr.   ZeroOner0   Ztogetheras_numer_denomr   r   r   domainZis_ExactZto_exactZ	get_exactZis_ZZZis_QQr	   solve_univariate_inequalityr3   rT   Zevalfas_relational)exprsr\   rU   exactrO   Zsolution_exprsrQ   exprr8   rR   rS   optrd   excluderC   r[   rD   reduce_rational_inequalities   sX    






 



rm   c                    s   |j dkrttd fdd ddd}g } | D ]D\} }|| krZt| d|} nt|  d|| } || g|  q8t||S )	a  Reduce an inequality with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequality, Abs, Symbol
    >>> x = Symbol('x', real=True)

    >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
    (2 < x) & (x < 8)

    >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
    (-19/3 < x) & (x < 7/3)

    See Also
    ========

    reduce_abs_inequalities
    Fzs
            Cannot solve inequalities with absolute values containing
            non-real variables.
            c                    s   g }| j s| jrP| j| jD ]0}|}|s2|}qfddt||D }qn| jr| j  jsjt	d|
 fdd| jD  nht| tr| jd }|D ]>\} }|| |t| dg f ||  |t| dg f qn
| g fg}|S )Nc                    s*   g | ]"\\}}\}} |||| fqS rC   rC   )rF   rj   condsZ_exprZ_conds)oprC   rD   rI   C  s     zBreduce_abs_inequality.<locals>._bottom_up_scan.<locals>.<listcomp>z'Only Integer Powers are allowed on Abs.c                 3   s   | ]\}}|  |fV  qd S NrC   )rF   rj   rn   )rY   rC   rD   	<genexpr>J  s     zAreduce_abs_inequality.<locals>._bottom_up_scan.<locals>.<genexpr>r   )Zis_AddZis_MulfuncargsrK   rL   is_Powexp
is_Integerr+   extendbaser*   r   r3   r   r   )rj   rg   argri   rn   _bottom_up_scan)rY   ro   rD   r{   7  s,    



 
 
z.reduce_abs_inequality.<locals>._bottom_up_scanr%   r'   r&   r(   r   )is_extended_real	TypeErrorr   keysr	   r3   rm   )rj   r8   r\   mappinginequalitiesrn   rC   rz   rD   reduce_abs_inequality  s    

r   c                    s   t  fdd| D  S )a  Reduce a system of inequalities with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequalities, Abs, Symbol
    >>> x = Symbol('x', extended_real=True)

    >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
    ... (Abs(x + 25) - 13, '>')], x)
    (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))

    >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
    (1/2 < x) & (x < 4)

    See Also
    ========

    reduce_abs_inequality
    c                    s   g | ]\}}t || qS rC   )r   )rF   rj   r8   r[   rC   rD   rI   y  s   z+reduce_abs_inequalities.<locals>.<listcomp>r   )rg   r\   rC   r[   rD   reduce_abs_inequalitiesd  s    r   Fc           (         s   ddl m} |tjdkr*ttdn2|tjk	r\td|d|}|rX|	}|S }|}j
dkrtj}|s||S |	|S j
dkrtddd	z|iW n  tk
r   ttd
Y nX d}tjkr|}ntjkrtj}njj }	t|	}
|
tjkrVt|	}	|	d}|tjkrB|}n|tjkrtj}n|
dk	rt|	|}j}|dkr|jdr|}n|jdstj}n6|dkr|jdr|}n|jdstj}|j|j }}|| tjkrtd|
dd|}|}|dkr|	 \}}z>|jkrNt |	jdkrNt!t"|	|}|dkrht!W n6 t!tfk
r   ttd#t$d Y nX t|	  fdd}g }|D ]}|%t"|| q|st& |}djkojdk}zt'|j(t)|j|j }t)|| t*|  t|j|j|j|k|j|k}t+dd |D r~t,|ddd }nZt-|dd }|d rtz"|d }t |dkrt.|}W n tk
r   tY nX W n tk
r   tdY nX tj}t/ tjkrd}t) }z4t0t/ |}t1|tsp|D ].}||kr>||r>|j
r>|t)|7 }q>n|j|j }} t,|t)|  D ]}||}!|| kr.||}"t2||}#|#|kr.|#j
r.||#r.|!r|"r|t||7 }n@|!r|t3||7 }n(|"r|t4||7 }n|t5||7 }|}q|D ]}$|t)|$8 }q:W n  tk
rp   tj}d}Y nX |tjkrt!td#||f ||}tjg}%|j}||kr||r|j6r|%7t)| |D ]~}&|&} |t2|| r|%7t|| dd |&|kr"|8|& n6|&|kr@|8|& ||&}'n|}'|'rX|%7t)|& | }q|j} | |kr|| r| j6r|%7t)|  |t2|| r|%7t5||  t/ tjkr|r||}nt9t:|% ||#|}|s|S |	|S )aT  Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() does not need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in :func:`sympy.solvers.solveset.solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    r   denomsFz|
        Inequalities in the complex domain are
        not supported. Try the real domain by
        setting domain=S.Reals)rU   
continuousNr\   TZextended_realz
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                r|   )r%   r'   r#   z
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    xc                    s     t| }z|d}W n tk
r:   tj}Y nX |tjtjfkrP|S |jdkr`tjS |d}|j	r||dS t
d| d S )Nr   Fr)   z!relationship did not evaluate: %s)subsr   rr   r~   r   r0   r.   r}   rY   Zis_comparabler2   )r   vrZ
expanded_erj   r\   rC   rD   valid  s    


z*solve_univariate_inequality.<locals>.valid=r"   c                 s   s   | ]}|j V  qd S rp   )r-   )rF   r   rC   rC   rD   rq   >  s     z.solve_univariate_inequality.<locals>.<genexpr>)	separatedc                 S   s   | j S rp   r}   )r   rC   rC   rD   <lambda>A      z-solve_univariate_inequality.<locals>.<lambda>z'sorting of these roots is not supportedz
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        );sympy.solvers.solversr   Z	is_subsetr   r/   r2   r   re   intersectionrf   r}   r1   r   xreplacer~   r.   r0   r^   r_   r   ra   r   rr   r   r`   supinfr5   r   rM   rc   free_symbolslenr+   r   r   r   rw   r   setboundaryr   listallr   r   sortedr   r   r*   _ptZRopenZLopenopen	is_finiter3   remover   r   )(rj   r\   rU   rd   r   r   rvZ_genZ_domaineZperiodconstZfranger8   r   r   rY   rZ   Zsolnsr   ZsingularitiesZ	include_xZdiscontinuitiesZcritical_pointsr:   ZsiftedZ	make_realcheckZim_solazstartendZvalid_startZvalid_zptrH   Zsol_setsr   _validrC   r   rD   re   }  sT   9
   













 








   re   c                 C   s   | j s|j s| | d }n| j r.|j r.tj}n| j r>| jdksN|j rV|jdkrVtd|j rb|jsn| j rx| jrx||  } }|j r| jr| d }q| jr| tj }q| d }n0| j r|jr|tj }n|jr|d }n|d }|S )z$Return a point between start and endr)   Nz,cannot proceed with unsigned infinite valuesr#   )is_infiniter   ra   Zis_extended_positiver+   Zis_extended_negativeZHalf)r   r   r   rC   rC   rD   r     s:    



r   c                 C   s  ddl m} || jkr| S | j|kr*| j} | j|krD|| jjkrD| S dd }d}tj}| j| j }zBt||}|	 dkr| 
| d}n|s|	 dkrtW n0 ttfk
r   |szt| gg|}W n tk
r   t| |}Y nX || ||}	|	tjkr.||||tjkr.|||k d}|| || }
|
tjkr|||| tjkr|| |k d}||| kd}|tjkr|	tjkr||kn||k }|
tjk	rt| |k |}nt|}Y nX g }|dkrn| }d}|j|dd\}}||8 }||8 }t|}|j|d	d\}}|jd	ksd|j|j  krTdkrnn n| jd
krn|}tj}|| }|jr| 
||}n| j
||}|| j|| jB }||}|| D ]T}tt|d||d}t|tr|j|kr||||jtjkr||  q| |fD ]N}||||tjkr|| ||tjk	r|||kr`||k n||k  q|| t| S )a  Return the inequality with s isolated on the left, if possible.
    If the relationship is non-linear, a solution involving And or Or
    may be returned. False or True are returned if the relationship
    is never True or always True, respectively.

    If `linear` is True (default is False) an `s`-dependent expression
    will be isolated on the left, if possible
    but it will not be solved for `s` unless the expression is linear
    in `s`. Furthermore, only "safe" operations which do not change the
    sense of the relationship are applied: no division by an unsigned
    value is attempted unless the relationship involves Eq or Ne and
    no division by a value not known to be nonzero is ever attempted.

    Examples
    ========

    >>> from sympy import Eq, Symbol
    >>> from sympy.solvers.inequalities import _solve_inequality as f
    >>> from sympy.abc import x, y

    For linear expressions, the symbol can be isolated:

    >>> f(x - 2 < 0, x)
    x < 2
    >>> f(-x - 6 < x, x)
    x > -3

    Sometimes nonlinear relationships will be False

    >>> f(x**2 + 4 < 0, x)
    False

    Or they may involve more than one region of values:

    >>> f(x**2 - 4 < 0, x)
    (-2 < x) & (x < 2)

    To restrict the solution to a relational, set linear=True
    and only the x-dependent portion will be isolated on the left:

    >>> f(x**2 - 4 < 0, x, linear=True)
    x**2 < 4

    Division of only nonzero quantities is allowed, so x cannot
    be isolated by dividing by y:

    >>> y.is_nonzero is None  # it is unknown whether it is 0 or not
    True
    >>> f(x*y < 1, x)
    x*y < 1

    And while an equality (or inequality) still holds after dividing by a
    non-zero quantity

    >>> nz = Symbol('nz', nonzero=True)
    >>> f(Eq(x*nz, 1), x)
    Eq(x, 1/nz)

    the sign must be known for other inequalities involving > or <:

    >>> f(x*nz <= 1, x)
    nz*x <= 1
    >>> p = Symbol('p', positive=True)
    >>> f(x*p <= 1, x)
    x <= 1/p

    When there are denominators in the original expression that
    are removed by expansion, conditions for them will be returned
    as part of the result:

    >>> f(x < x*(2/x - 1), x)
    (x < 1) & Ne(x, 0)
    r   r   c                 S   sP   z0|  ||}|tjkr|W S |dkr,W d S |W S  tk
rJ   tj Y S X d S )NTF)r   r   NaNr~   )ierH   rX   r   rC   rC   rD   classify  s    
z#_solve_inequality.<locals>.classifyNr#   T)Zas_AddF)r"   r!   )linear)r   r   r   r_   r6   r^   r   r5   r   Zdegreerr   r,   r2   r   rm   re   r.   r0   r   r   Zas_independentr   is_zeroZis_negativeZis_positiver`   rb   _solve_inequalityr
   r*   r3   )r   rH   r   r   r   r   Zoorj   rG   ZokooZoknoorn   r   r_   bZaxZefr   Zbeginning_denomsZcurrent_denomsrZ   crX   rC   rC   rD   r     s    J



 

$
r   c                    s:  i i  }}g }| D ]}|j |j }}|t}t|dkrD|  nF|j|@ }	t|	dkr~|	  |tt	|d|  qnt
td| r| g ||f q| fdd}
|
rtdd |
D r| g ||f q|tt	|d|  qdd	 | D }d
d	 | D }t|| |  S )Nr#   r   zZ
                    inequality has more than one symbol of interest.
                    c                    s    |   o| jp| jo| jj S rp   )rV   Zis_Functionrt   ru   rv   )ur[   rC   rD   r     s    
z&_reduce_inequalities.<locals>.<lambda>c                 s   s   | ]}t |tV  qd S rp   )r*   r   rF   rX   rC   rC   rD   rq     s     z'_reduce_inequalities.<locals>.<genexpr>c                 S   s   g | ]\}}t |g|qS rC   )rm   rF   r\   rg   rC   rC   rD   rI     s     z(_reduce_inequalities.<locals>.<listcomp>c                 S   s   g | ]\}}t ||qS rC   )r   r   rC   rC   rD   rI     s     )r^   r`   Zatomsr   r   popr   r3   r   r	   r2   r   Zis_polynomial
setdefaultfindr   itemsr   )r   symbolsZ	poly_partZabs_partotherZ
inequalityrj   r8   genscommon
componentsZpoly_reducedZabs_reducedrC   r[   rD   _reduce_inequalitiesr  s,    




r   c                    sP  t | s| g} dd | D } t jdd | D  }t |s@|g}t|pJ||@ }tdd |D rnttddd |D   fd	d| D }  fd
d|D }g }| D ]~}t|tr||j	
 |j
  d}n|dkrt|d}|dkrqn|dkrtj  S |j	jrtd| || q|} ~t| |}|dd   D S )aE  Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    (-3 <= x) & (x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    (x < oo) & (x >= 1 - 2*y)
    c                 S   s   g | ]}t |qS rC   )r   r   rC   rC   rD   rI     s     z'reduce_inequalities.<locals>.<listcomp>c                 S   s   g | ]
}|j qS rC   )r   r   rC   rC   rD   rI     s     c                 s   s   | ]}|j d kV  qdS )FNr   r   rC   rC   rD   rq     s     z&reduce_inequalities.<locals>.<genexpr>zP
            inequalities cannot contain symbols that are not real.
            c                 S   s&   i | ]}|j d kr|t|jddqS )NTr   )r}   r   namer   rC   rC   rD   
<dictcomp>  s    
 z'reduce_inequalities.<locals>.<dictcomp>c                    s   g | ]}|  qS rC   r   r   ZrecastrC   rD   rI     s     c                    s   h | ]}|  qS rC   r   r   r   rC   rD   	<setcomp>  s     z&reduce_inequalities.<locals>.<setcomp>r   r   TFr    c                 S   s   i | ]\}}||qS rC   rC   )rF   kr   rC   rC   rD   r     s      )r   r   rN   anyr~   r   r*   r	   rr   r^   r,   r_   r
   r   r0   r-   r2   r3   r   r   r   )r   r   r   ZkeeprX   r   rC   r   rD   reduce_inequalities  sB    





r   )T)F)9__doc__rK   Zsympy.calculus.utilr   r   r   Z
sympy.corer   r   r   Zsympy.core.exprtoolsr   Zsympy.core.relationalr	   r
   r   r   Zsympy.sets.setsr   r   r   r   Zsympy.core.singletonr   Zsympy.core.functionr   Z$sympy.functions.elementary.complexesr   r   Zsympy.logicr   Zsympy.polysr   r   r   Zsympy.polys.polyutilsr   Zsympy.solvers.solvesetr   r   Zsympy.utilities.iterablesr   r   Zsympy.utilities.miscr   rE   rJ   rT   rm   r   r   r/   re   r   r   r   r   rC   rC   rC   rD   <module>   s:   [B
ZG  )!
 .-