U
    9%e<                     @   s   d dl mZ d dlmZ d dlmZ d dlmZmZ d dl	m
Z
mZmZ d dlmZ d dlmZ d dlmZ d d	lmZ d d
lmZ d dlmZ d#ddZdd Zdd Zdd Zdd Zdd Zdd Zdd Z dd Z!dd d!d"Z"dS )$    )
CoordSys3D)Del)
BaseScalar)Vector
BaseVector)gradientcurl
divergence)diff)S)	integrate)simplify)sympify)DyadicNFc              	   C   s  | dt jfkr| S t|ts$tdt| t r|dk	r>td|rdd | ttD |h }i }|D ]}|	|
| qf| |} t j}|  }|D ]@}	|	|kr||	||	 |	 }
|t|
|7 }q|||	 7 }q|S t| trh|dkr|}t|ts
tdtj}|}| j D ]D\}}|t|||dt|jd ||dt|jd	 ||dB  7 }q|S |dk	rztd|rt }t| } | tD ]}	|	j|kr||	j qi }|D ]}|	|
| q| |S | S dS )
aK  
    Global function for 'express' functionality.

    Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
    coordinate system.

    If 'variables' is True, then the coordinate variables (base scalars)
    of other coordinate systems present in the vector/scalar field or
    dyadic are also substituted in terms of the base scalars of the
    given system.

    Parameters
    ==========

    expr : Vector/Dyadic/scalar(sympyfiable)
        The expression to re-express in CoordSys3D 'system'

    system: CoordSys3D
        The coordinate system the expr is to be expressed in

    system2: CoordSys3D
        The other coordinate system required for re-expression
        (only for a Dyadic Expr)

    variables : boolean
        Specifies whether to substitute the coordinate variables present
        in expr, in terms of those of parameter system

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy import Symbol, cos, sin
    >>> N = CoordSys3D('N')
    >>> q = Symbol('q')
    >>> B = N.orient_new_axis('B', q, N.k)
    >>> from sympy.vector import express
    >>> express(B.i, N)
    (cos(q))*N.i + (sin(q))*N.j
    >>> express(N.x, B, variables=True)
    B.x*cos(q) - B.y*sin(q)
    >>> d = N.i.outer(N.i)
    >>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
    True

    r   z>system should be a CoordSys3D                         instanceNzJsystem2 should not be provided for                                 Vectorsc                 S   s   h | ]
}|j qS  )system).0xr   r   U/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/vector/functions.py	<setcomp>M   s     zexpress.<locals>.<setcomp>zCsystem2 should be a CoordSys3D                             instance	variables   )r   zero
isinstancer   	TypeError
ValueErrorZatomsr   r   updateZ
scalar_mapsubsZseparateZrotation_matrixZ	to_matrixmatrix_to_vectorr   
componentsitemsexpressargssetr   r   add)exprr   Zsystem2r   Zsystem_listZ	subs_dictfoutvecpartsr   tempZoutdyadvarkvZ
system_setr   r   r   r"      s`    0





r"   c                 C   s   ddl m} || }t|dkrtt|}t| |dd} | \}}}| \}}}	t	||t
| | }
|
t	||t
| | 7 }
|
t	||t
| |	 7 }
|
dkrt| trtj}
|
S t| trtjS tjS dS )a  
    Returns the directional derivative of a scalar or vector field computed
    along a given vector in coordinate system which parameters are expressed.

    Parameters
    ==========

    field : Vector or Scalar
        The scalar or vector field to compute the directional derivative of

    direction_vector : Vector
        The vector to calculated directional derivative along them.


    Examples
    ========

    >>> from sympy.vector import CoordSys3D, directional_derivative
    >>> R = CoordSys3D('R')
    >>> f1 = R.x*R.y*R.z
    >>> v1 = 3*R.i + 4*R.j + R.k
    >>> directional_derivative(f1, v1)
    R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
    >>> f2 = 5*R.x**2*R.z
    >>> directional_derivative(f2, v1)
    5*R.x**2 + 30*R.x*R.z

    r   )_get_coord_systemsTr   N)sympy.vector.operatorsr.   lennextiterr"   base_vectorsbase_scalarsr   dotr
   r   r   r   Zero)fieldZdirection_vectorr.   	coord_sysijr,   r   yzoutr   r   r   directional_derivative   s     
r>   c                 C   s:   t  }| jr(tt| tt|   S |||  S )a!  
    Return the laplacian of the given field computed in terms of
    the base scalars of the given coordinate system.

    Parameters
    ==========

    expr : SymPy Expr or Vector
        expr denotes a scalar or vector field.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, laplacian
    >>> R = CoordSys3D('R')
    >>> f = R.x**2*R.y**5*R.z
    >>> laplacian(f)
    20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
    >>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
    >>> laplacian(f)
    2*R.i + 6*R.y*R.j + 12*R.z**2*R.k

    )r   Z	is_Vectorr   r	   r   Zdoitr5   )r&   Zdelopr   r   r   	laplacian   s    r?   c                 C   s2   t | tstd| tjkr dS t|  tjkS )a  
    Checks if a field is conservative.

    Parameters
    ==========

    field : Vector
        The field to check for conservative property

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector import is_conservative
    >>> R = CoordSys3D('R')
    >>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
    True
    >>> is_conservative(R.z*R.j)
    False

    field should be a VectorT)r   r   r   r   r   r   r7   r   r   r   is_conservative   s
    

rB   c                 C   s2   t | tstd| tjkr dS t|  tjkS )a  
    Checks if a field is solenoidal.

    Parameters
    ==========

    field : Vector
        The field to check for solenoidal property

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector import is_solenoidal
    >>> R = CoordSys3D('R')
    >>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
    True
    >>> is_solenoidal(R.y * R.j)
    False

    r@   T)r   r   r   r   r	   r   r   r6   rA   r   r   r   is_solenoidal   s
    

rC   c                 C   s   t | std| tjkr tjS t|ts2tdt	| |dd} |
 }| }t| |d |d }t|dd D ]>\}}t|||d  }| || }|t|||d  7 }qx|S )a  
    Returns the scalar potential function of a field in a given
    coordinate system (without the added integration constant).

    Parameters
    ==========

    field : Vector
        The vector field whose scalar potential function is to be
        calculated

    coord_sys : CoordSys3D
        The coordinate system to do the calculation in

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector import scalar_potential, gradient
    >>> R = CoordSys3D('R')
    >>> scalar_potential(R.k, R) == R.z
    True
    >>> scalar_field = 2*R.x**2*R.y*R.z
    >>> grad_field = gradient(scalar_field)
    >>> scalar_potential(grad_field, R)
    2*R.x**2*R.y*R.z

    zField is not conservativecoord_sys must be a CoordSys3DTr   r   r   N)rB   r   r   r   r   r6   r   r   r   r"   r3   r4   r   r5   	enumerater
   )r7   r8   
dimensionsscalarsZtemp_functionr9   dimZpartial_diffr   r   r   scalar_potential  s    

rI   c                 C   s   t |tstdt | tr(t| |}n| }|j}t|||dd}t|||dd}i }i }	| }
t	|
 D ],\}}||||
| < |||	|
| < qv||	|| S )a)  
    Returns the scalar potential difference between two points in a
    certain coordinate system, wrt a given field.

    If a scalar field is provided, its values at the two points are
    considered. If a conservative vector field is provided, the values
    of its scalar potential function at the two points are used.

    Returns (potential at point2) - (potential at point1)

    The position vectors of the two Points are calculated wrt the
    origin of the coordinate system provided.

    Parameters
    ==========

    field : Vector/Expr
        The field to calculate wrt

    coord_sys : CoordSys3D
        The coordinate system to do the calculations in

    point1 : Point
        The initial Point in given coordinate system

    position2 : Point
        The second Point in the given coordinate system

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector import scalar_potential_difference
    >>> R = CoordSys3D('R')
    >>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
    >>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
    >>> scalar_potential_difference(vectfield, R, R.origin, P)
    2*R.x**2*R.y
    >>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
    >>> scalar_potential_difference(vectfield, R, P, Q)
    -2*R.x**2*R.y + 18

    rD   Tr   )r   r   r   r   rI   originr"   Zposition_wrtr4   rE   r3   r5   r   )r7   r8   Zpoint1Zpoint2Z	scalar_fnrJ   Z	position1Z	position2Z
subs_dict1Z
subs_dict2rG   r9   r   r   r   r   scalar_potential_differenceD  s&    -

rK   c                 C   s4   t j}| }t| D ]\}}||||  7 }q|S )a  
    Converts a vector in matrix form to a Vector instance.

    It is assumed that the elements of the Matrix represent the
    measure numbers of the components of the vector along basis
    vectors of 'system'.

    Parameters
    ==========

    matrix : SymPy Matrix, Dimensions: (3, 1)
        The matrix to be converted to a vector

    system : CoordSys3D
        The coordinate system the vector is to be defined in

    Examples
    ========

    >>> from sympy import ImmutableMatrix as Matrix
    >>> m = Matrix([1, 2, 3])
    >>> from sympy.vector import CoordSys3D, matrix_to_vector
    >>> C = CoordSys3D('C')
    >>> v = matrix_to_vector(m, C)
    >>> v
    C.i + 2*C.j + 3*C.k
    >>> v.to_matrix(C) == m
    True

    )r   r   r3   rE   )matrixr   r(   Zvectsr9   r   r   r   r   r     s
     r   c                 C   s   | j |j kr(tdt|  d t| g }|}|jdk	rL|| |j}q0|| t|}g }| }||kr|| |j}qft|}||}|dkr|||  |d8 }q||fS )z
    Calculates the 'path' of objects starting from 'from_object'
    to 'to_object', along with the index of the first common
    ancestor in the tree.

    Returns (index, list) tuple.
    z!No connecting path found between z and Nr   r   )_rootr   str_parentappendr$   r0   index)Zfrom_objectZ	to_object
other_pathobjZ
object_set	from_pathrQ   r9   r   r   r   _path  s4    	





rU   )orthonormalc                 G   s   t dd |D stdg }t|D ]N\}}t|D ]}||| || 8 }q6t|tjrjt	d|
| q&| rdd |D }|S )aO  
    Takes a sequence of independent vectors and orthogonalizes them
    using the Gram - Schmidt process. Returns a list of
    orthogonal or orthonormal vectors.

    Parameters
    ==========

    vlist : sequence of independent vectors to be made orthogonal.

    orthonormal : Optional parameter
                  Set to True if the vectors returned should be
                  orthonormal.
                  Default: False

    Examples
    ========

    >>> from sympy.vector.coordsysrect import CoordSys3D
    >>> from sympy.vector.functions import orthogonalize
    >>> C = CoordSys3D('C')
    >>> i, j, k = C.base_vectors()
    >>> v1 = i + 2*j
    >>> v2 = 2*i + 3*j
    >>> orthogonalize(v1, v2)
    [C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process

    c                 s   s   | ]}t |tV  qd S )N)r   r   r   Zvecr   r   r   	<genexpr>  s     z orthogonalize.<locals>.<genexpr>z#Each element must be of Type Vectorz#Vector set not linearly independentc                 S   s   g | ]}|  qS r   )	normalizerW   r   r   r   
<listcomp>  s     z!orthogonalize.<locals>.<listcomp>)allr   rE   rangeZ
projectionr   equalsr   r   r   rP   )rV   vlistZortho_vlistr9   termr:   r   r   r   orthogonalize  s    #r`   )NF)#Zsympy.vector.coordsysrectr   Zsympy.vector.deloperatorr   Zsympy.vector.scalarr   Zsympy.vector.vectorr   r   r/   r   r   r	   Zsympy.core.functionr
   Zsympy.core.singletonr   Zsympy.integrals.integralsr   Zsympy.simplify.simplifyr   Z
sympy.corer   Zsympy.vector.dyadicr   r"   r>   r?   rB   rC   rI   rK   r   rU   r`   r   r   r   r   <module>   s(   
q1!!3E'!