U
    9%e                     @   sF  d dl mZmZ edd edd edd edd	 ed
d
 edd edd edddd edddd edddd edd edd edd edd ed d! ed"d#dd ed$d% ed&d' ed(d)dd ed*d+dd ed,d- ed.d/ddd0 ed1d2dd ed3ddd ed4ddd ed5d6dd7 d8S )9   )register_artifactregister_logZdynamoztorch._dynamoZaotztorch._functorch.aot_autogradZinductorztorch._inductorZdynamicz%torch.fx.experimental.symbolic_shapesZtorchdistributedztorch.distributedZonnxz
torch.onnxZguardszhThis prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.T)visibleZverbose_guards )off_by_defaultbytecodez{Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.graphzvPrints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. Z
graph_codez4Like `graph`, but gives you the Python code instead.Zgraph_sizesz5Prints the sizes of all FX nodes in the dynamo graph.Ztrace_sourcezAs we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`Z
trace_callzhLike trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.Z
aot_graphszPrints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to InductorZaot_joint_graphz_Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioningZ
ddp_graphszOnly relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.Z
recompilesz?Prints the reason why we recompiled a graph. Very, very useful.Zgraph_breakszPrints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performancenot_implementedzPrints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch toZoutput_codez>Prints the code that Inductor generates (either Triton or C++))r   r   ZschedulezIInductor scheduler information. Useful if working on Inductor fusion algoZ
perf_hintsZonnx_diagnosticsZcustom_format_test_artifactzTesting only)Z
log_formatN)	_internalr   r    r   r   \/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/_logging/_registrations.py<module>   s   







 