U
    9%e                     @   s8   d dl Z d dlZddgZG dd dZG dd dZdS )    Ndetect_anomalyset_detect_anomalyc                   @   s>   e Zd ZdZdddddZddddZedd	d
dZdS )r   a  Context-manager that enable anomaly detection for the autograd engine.

    This does two things:

    - Running the forward pass with detection enabled will allow the backward
      pass to print the traceback of the forward operation that created the failing
      backward function.
    - If ``check_nan`` is ``True``, any backward computation that generate "nan"
      value will raise an error. Default ``True``.

    .. warning::
        This mode should be enabled only for debugging as the different tests
        will slow down your program execution.

    Example:

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ANOMALY)
        >>> import torch
        >>> from torch import autograd
        >>> class MyFunc(autograd.Function):
        ...     @staticmethod
        ...     def forward(ctx, inp):
        ...         return inp.clone()
        ...     @staticmethod
        ...     def backward(ctx, gO):
        ...         # Error during the backward pass
        ...         raise RuntimeError("Some error in backward")
        ...         return gO.clone()
        >>> def run_fn(a):
        ...     out = MyFunc.apply(a)
        ...     return out.sum()
        >>> inp = torch.rand(10, 10, requires_grad=True)
        >>> out = run_fn(inp)
        >>> out.backward()
            Traceback (most recent call last):
              File "<stdin>", line 1, in <module>
              File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
                torch.autograd.backward(self, gradient, retain_graph, create_graph)
              File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
                allow_unreachable=True)  # allow_unreachable flag
              File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
                return self._forward_cls.backward(self, *args)
              File "<stdin>", line 8, in backward
            RuntimeError: Some error in backward
        >>> with autograd.detect_anomaly():
        ...     inp = torch.rand(10, 10, requires_grad=True)
        ...     out = run_fn(inp)
        ...     out.backward()
            Traceback of forward call that caused the error:
              File "tmp.py", line 53, in <module>
                out = run_fn(inp)
              File "tmp.py", line 44, in run_fn
                out = MyFunc.apply(a)
            Traceback (most recent call last):
              File "<stdin>", line 4, in <module>
              File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
                torch.autograd.backward(self, gradient, retain_graph, create_graph)
              File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
                allow_unreachable=True)  # allow_unreachable flag
              File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
                return self._forward_cls.backward(self, *args)
              File "<stdin>", line 8, in backward
            RuntimeError: Some error in backward

    TNreturnc                 C   s,   t  | _|| _t  | _tjddd d S )NzqAnomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.   )
stacklevel)torchis_anomaly_enabledprev	check_nanis_anomaly_check_nan_enabledprev_check_nanwarningswarn)selfr    r   Z/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/autograd/anomaly_mode.py__init__K   s    

zdetect_anomaly.__init__c                 C   s   t d| j d S )NT)r   set_anomaly_enabledr   r   r   r   r   	__enter__V   s    zdetect_anomaly.__enter__argsr   c                 G   s   t | j| j d S Nr   r   r
   r   r   r   r   r   r   __exit__Y   s    zdetect_anomaly.__exit__)T)__name__
__module____qualname____doc__r   r   objectr   r   r   r   r   r      s   Bc                   @   sB   e Zd ZdZdeeddddZdddd	Zedd
ddZdS )r   aT  Context-manager that sets the anomaly detection for the autograd engine on or off.

    ``set_detect_anomaly`` will enable or disable the autograd anomaly detection
    based on its argument :attr:`mode`.
    It can be used as a context-manager or as a function.

    See ``detect_anomaly`` above for details of the anomaly detection behaviour.

    Args:
        mode (bool): Flag whether to enable anomaly detection (``True``),
                     or disable (``False``).
        check_nan (bool): Flag whether to raise an error when the backward
                          generate "nan"

    TN)moder   r   c                 C   s$   t  | _t  | _t || d S r   )r   r	   r
   r   r   r   )r   r"   r   r   r   r   r   n   s    

zset_detect_anomaly.__init__r   c                 C   s   d S r   r   r   r   r   r   r   s   s    zset_detect_anomaly.__enter__r   c                 G   s   t | j| j d S r   r   r   r   r   r   r   v   s    zset_detect_anomaly.__exit__)T)	r   r   r   r    boolr   r   r!   r   r   r   r   r   r   ]   s   )r   r   __all__r   r   r   r   r   r   <module>   s   U