U
    9%e=(                     @   s   d Z ddlZddlmZmZ dddgZG dd dZe Ze Ze	ej
e	ej
dd	 Ze	ejd
d Ze	ejdd Ze	eje	eje	eje	ejdd Ze	eje	eje	eje	ejdd Ze	eje	ejdd Ze	eje	eje	eje	ejdd Ze	ejdd Ze	ejdd Ze	ejdd Ze	eje	ej dd Z!e	ej"e	ej"dd Z#e	ej$d d! Z%e	ej$d"d# Z&e	ej'd$d% Z(e	ej'd&d' Z)dS )(aF  
PyTorch provides two global :class:`ConstraintRegistry` objects that link
:class:`~torch.distributions.constraints.Constraint` objects to
:class:`~torch.distributions.transforms.Transform` objects. These objects both
input constraints and return transforms, but they have different guarantees on
bijectivity.

1. ``biject_to(constraint)`` looks up a bijective
   :class:`~torch.distributions.transforms.Transform` from ``constraints.real``
   to the given ``constraint``. The returned transform is guaranteed to have
   ``.bijective = True`` and should implement ``.log_abs_det_jacobian()``.
2. ``transform_to(constraint)`` looks up a not-necessarily bijective
   :class:`~torch.distributions.transforms.Transform` from ``constraints.real``
   to the given ``constraint``. The returned transform is not guaranteed to
   implement ``.log_abs_det_jacobian()``.

The ``transform_to()`` registry is useful for performing unconstrained
optimization on constrained parameters of probability distributions, which are
indicated by each distribution's ``.arg_constraints`` dict. These transforms often
overparameterize a space in order to avoid rotation; they are thus more
suitable for coordinate-wise optimization algorithms like Adam::

    loc = torch.zeros(100, requires_grad=True)
    unconstrained = torch.zeros(100, requires_grad=True)
    scale = transform_to(Normal.arg_constraints['scale'])(unconstrained)
    loss = -Normal(loc, scale).log_prob(data).sum()

The ``biject_to()`` registry is useful for Hamiltonian Monte Carlo, where
samples from a probability distribution with constrained ``.support`` are
propagated in an unconstrained space, and algorithms are typically rotation
invariant.::

    dist = Exponential(rate)
    unconstrained = torch.zeros(100, requires_grad=True)
    sample = biject_to(dist.support)(unconstrained)
    potential_energy = -dist.log_prob(sample).sum()

.. note::

    An example where ``transform_to`` and ``biject_to`` differ is
    ``constraints.simplex``: ``transform_to(constraints.simplex)`` returns a
    :class:`~torch.distributions.transforms.SoftmaxTransform` that simply
    exponentiates and normalizes its inputs; this is a cheap and mostly
    coordinate-wise operation appropriate for algorithms like SVI. In
    contrast, ``biject_to(constraints.simplex)`` returns a
    :class:`~torch.distributions.transforms.StickBreakingTransform` that
    bijects its input down to a one-fewer-dimensional space; this a more
    expensive less numerically stable transform but is needed for algorithms
    like HMC.

The ``biject_to`` and ``transform_to`` objects can be extended by user-defined
constraints and transforms using their ``.register()`` method either as a
function on singleton constraints::

    transform_to.register(my_constraint, my_transform)

or as a decorator on parameterized constraints::

    @transform_to.register(MyConstraintClass)
    def my_factory(constraint):
        assert isinstance(constraint, MyConstraintClass)
        return MyTransform(constraint.param1, constraint.param2)

You can create your own registry by creating a new :class:`ConstraintRegistry`
object.
    N)constraints
transformsConstraintRegistry	biject_totransform_toc                       s2   e Zd ZdZ fddZd	ddZdd Z  ZS )
r   z5
    Registry to link constraints to transforms.
    c                    s   i | _ t   d S N)	_registrysuper__init__)self	__class__ f/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/distributions/constraint_registry.pyr
   T   s    zConstraintRegistry.__init__Nc                    s\   |dkr fddS t  tjr*t  t  tr@t tjsNtd  |j < |S )a  
        Registers a :class:`~torch.distributions.constraints.Constraint`
        subclass in this registry. Usage::

            @my_registry.register(MyConstraintClass)
            def construct_transform(constraint):
                assert isinstance(constraint, MyConstraint)
                return MyTransform(constraint.arg_constraints)

        Args:
            constraint (subclass of :class:`~torch.distributions.constraints.Constraint`):
                A subclass of :class:`~torch.distributions.constraints.Constraint`, or
                a singleton object of the desired class.
            factory (Callable): A callable that inputs a constraint object and returns
                a  :class:`~torch.distributions.transforms.Transform` object.
        Nc                    s     | S r   )register)factory
constraintr   r   r   <lambda>k       z-ConstraintRegistry.register.<locals>.<lambda>zLExpected constraint to be either a Constraint subclass or instance, but got )
isinstancer   
Constrainttype
issubclass	TypeErrorr   r   r   r   r   r   r   r   X   s     
zConstraintRegistry.registerc                 C   sH   z| j t| }W n, tk
r>   tdt|j ddY nX ||S )aq  
        Looks up a transform to constrained space, given a constraint object.
        Usage::

            constraint = Normal.arg_constraints['scale']
            scale = transform_to(constraint)(torch.zeros(1))  # constrained
            u = transform_to(constraint).inv(scale)           # unconstrained

        Args:
            constraint (:class:`~torch.distributions.constraints.Constraint`):
                A constraint object.

        Returns:
            A :class:`~torch.distributions.transforms.Transform` object.

        Raises:
            `NotImplementedError` if no transform has been registered.
        zCannot transform z constraintsN)r   r   KeyErrorNotImplementedError__name__r   r   r   r   __call__{   s    zConstraintRegistry.__call__)N)r   
__module____qualname____doc__r
   r   r   __classcell__r   r   r   r   r   O   s   
#c                 C   s   t jS r   )r   Zidentity_transformr   r   r   r   _transform_to_real   s    r%   c                 C   s   t | j}t|| jS r   )r   base_constraintr   IndependentTransformreinterpreted_batch_ndimsr   Zbase_transformr   r   r   _biject_to_independent   s
    
 r*   c                 C   s   t | j}t|| jS r   )r   r&   r   r'   r(   r)   r   r   r   _transform_to_independent   s
    
 r+   c                 C   s   t  S r   )r   ExpTransformr$   r   r   r   _transform_to_positive   s    r-   c                 C   s   t t  t | jdgS )N   )r   ComposeTransformr,   AffineTransformlower_boundr$   r   r   r   _transform_to_greater_than   s
    r2   c                 C   s   t t  t | jdgS )N)r   r/   r,   r0   upper_boundr$   r   r   r   _transform_to_less_than   s
    r5   c                 C   sl   t | jtjo| jdk}t | jtjo.| jdk}|r@|r@t S | j}| j| j }tt t||gS )Nr   r.   )	r   r1   numbersNumberr4   r   ZSigmoidTransformr/   r0   )r   Z
lower_is_0Z
upper_is_1locscaler   r   r   _transform_to_interval   s    r:   c                 C   s   t  S r   )r   ZStickBreakingTransformr$   r   r   r   _biject_to_simplex   s    r;   c                 C   s   t  S r   )r   ZSoftmaxTransformr$   r   r   r   _transform_to_simplex   s    r<   c                 C   s   t  S r   )r   ZLowerCholeskyTransformr$   r   r   r   _transform_to_lower_cholesky   s    r=   c                 C   s   t  S r   )r   ZPositiveDefiniteTransformr$   r   r   r   _transform_to_positive_definite   s    r>   c                 C   s   t  S r   )r   ZCorrCholeskyTransformr$   r   r   r   _transform_to_corr_cholesky  s    r?   c                 C   s   t dd | jD | j| jS )Nc                 S   s   g | ]}t |qS r   r   .0cr   r   r   
<listcomp>  s     z"_biject_to_cat.<locals>.<listcomp>r   ZCatTransformcseqdimlengthsr$   r   r   r   _biject_to_cat  s
      rI   c                 C   s   t dd | jD | j| jS )Nc                 S   s   g | ]}t |qS r   r   rA   r   r   r   rD     s     z%_transform_to_cat.<locals>.<listcomp>rE   r$   r   r   r   _transform_to_cat  s
      rK   c                 C   s   t dd | jD | jS )Nc                 S   s   g | ]}t |qS r   r@   rA   r   r   r   rD     s     z$_biject_to_stack.<locals>.<listcomp>r   ZStackTransformrF   rG   r$   r   r   r   _biject_to_stack  s     rM   c                 C   s   t dd | jD | jS )Nc                 S   s   g | ]}t |qS r   rJ   rA   r   r   r   rD   #  s     z'_transform_to_stack.<locals>.<listcomp>rL   r$   r   r   r   _transform_to_stack   s     rN   )*r"   r6   Ztorch.distributionsr   r   __all__r   r   r   r   realr%   Zindependentr*   r+   ZpositiveZnonnegativer-   greater_thanZgreater_than_eqr2   	less_thanr5   intervalZhalf_open_intervalr:   Zsimplexr;   r<   Zlower_choleskyr=   Zpositive_definiteZpositive_semidefiniter>   Zcorr_choleskyr?   catrI   rK   stackrM   rN   r   r   r   r   <module>   sl   CI













	

	




















