U
    9%e                     @   sP   d dl mZ ddlmZ ddlmZ ddgZG dd deZG d	d deZ	d
S )   )Module   )
functional    )TensorPixelShufflePixelUnshufflec                       sV   e Zd ZU dZdgZeed< edd fddZeeddd	Z	e
d
ddZ  ZS )r   a  Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
    to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.

    This is useful for implementing efficient sub-pixel convolution
    with a stride of :math:`1/r`.

    See the paper:
    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
    by Shi et. al (2016) for more details.

    Args:
        upscale_factor (int): factor to increase spatial resolution by

    Shape:
        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where

    .. math::
        C_{out} = C_{in} \div \text{upscale\_factor}^2

    .. math::
        H_{out} = H_{in} \times \text{upscale\_factor}

    .. math::
        W_{out} = W_{in} \times \text{upscale\_factor}

    Examples::

        >>> pixel_shuffle = nn.PixelShuffle(3)
        >>> input = torch.randn(1, 9, 4, 4)
        >>> output = pixel_shuffle(input)
        >>> print(output.size())
        torch.Size([1, 1, 12, 12])

    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
        https://arxiv.org/abs/1609.05158
    upscale_factorN)r	   returnc                    s   t    || _d S N)super__init__r	   )selfr	   	__class__ \/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/nn/modules/pixelshuffle.pyr   1   s    
zPixelShuffle.__init__inputr
   c                 C   s   t || jS r   )FZpixel_shuffler	   r   r   r   r   r   forward5   s    zPixelShuffle.forwardr
   c                 C   s   d| j  S )Nzupscale_factor=)r	   r   r   r   r   
extra_repr8   s    zPixelShuffle.extra_repr__name__
__module____qualname____doc__Z__constants__int__annotations__r   r   r   strr   __classcell__r   r   r   r   r      s   
%c                       sV   e Zd ZU dZdgZeed< edd fddZeeddd	Z	e
d
ddZ  ZS )r   a  Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
    in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
    :math:`(*, C \times r^2, H, W)`, where r is a downscale factor.

    See the paper:
    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
    by Shi et. al (2016) for more details.

    Args:
        downscale_factor (int): factor to decrease spatial resolution by

    Shape:
        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where

    .. math::
        C_{out} = C_{in} \times \text{downscale\_factor}^2

    .. math::
        H_{out} = H_{in} \div \text{downscale\_factor}

    .. math::
        W_{out} = W_{in} \div \text{downscale\_factor}

    Examples::

        >>> pixel_unshuffle = nn.PixelUnshuffle(3)
        >>> input = torch.randn(1, 1, 12, 12)
        >>> output = pixel_unshuffle(input)
        >>> print(output.size())
        torch.Size([1, 9, 4, 4])

    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
        https://arxiv.org/abs/1609.05158
    downscale_factorN)r$   r
   c                    s   t    || _d S r   )r   r   r$   )r   r$   r   r   r   r   c   s    
zPixelUnshuffle.__init__r   c                 C   s   t || jS r   )r   Zpixel_unshuffler$   r   r   r   r   r   g   s    zPixelUnshuffle.forwardr   c                 C   s   d| j  S )Nzdownscale_factor=)r$   r   r   r   r   r   j   s    zPixelUnshuffle.extra_reprr   r   r   r   r   r   <   s   
#N)
moduler    r   r   Ztorchr   __all__r   r   r   r   r   r   <module>   s
   4