U
    9%eG                     @   s   d dl Z d dlmZmZmZmZmZmZmZ d dl	Z	d dl	m
Z
mZ d dlmZmZ ee	j
ee	j
 f ZdddgZdeeeeee e	j
d
ddZdeeeeee e	j
d
ddZdeeee ddddZdS )    N)UnionIterableListDictTupleOptionalcast)Tensorinf)"_group_tensors_by_device_and_dtype_has_foreach_supportclip_grad_norm_clip_grad_normclip_grad_value_       @F)
parametersmax_norm	norm_typeerror_if_nonfiniteforeachreturnc                    s  t | tjr| g} dd | D }t|}tt|dkrFtdS |d j tdd |D g}tkr fdd|D }t|dkr|d nt	t
|}ng }| D ]p\\}	}
\\}}
|dks|rt||	d	r|t| q|rtd
|	j dq|fdd|D  qtjt
 fdd|D }|rpt| | rptd d||d  }tj|dd}| D ]\\}	}
\\}}
|dks|rt||	d	rt|||	 n>|rtd
|	j dn$||	}|D ]}| | qq|S )aD  Clips gradient norm of an iterable of parameters.

    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.

    Args:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float): max norm of the gradients
        norm_type (float): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
        error_if_nonfinite (bool): if True, an error is thrown if the total
            norm of the gradients from :attr:`parameters` is ``nan``,
            ``inf``, or ``-inf``. Default: False (will switch to True in the future)
        foreach (bool): use the faster foreach-based implementation.
            If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently
            fall back to the slow implementation for other device types.
            Default: ``None``

    Returns:
        Total norm of the parameter gradients (viewed as a single vector).
    c                 S   s   g | ]}|j d k	r|j qS Ngrad.0p r   W/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/nn/utils/clip_grad.py
<listcomp>'   s     
 z#clip_grad_norm_.<locals>.<listcomp>r   g        c                 S   s   g | ]}|  qS r   )detachr   gr   r   r   r   .   s     c                    s$   g | ]}t j| t qS r   )torchlinalgvector_normr    r
   tor!   first_devicer   r   r   1   s        Ndevice:foreach=True was passed, but can't use the foreach API on  tensorsc                    s   g | ]}t j| qS r   )r#   r$   r%   r!   )r   r   r   r   ;   s     c                    s   g | ]}|  qS r   )r&   )r   Znormr'   r   r   r   =   s     zThe total norm of order z for gradients from `parameters` is non-finite, so it cannot be clipped. To disable this error and scale the gradients by the non-finite norm anyway, set `error_if_nonfinite=False`gư>g      ?)max)
isinstancer#   r	   floatlenZtensorr+   r   r
   r.   stackitemsr   extendZ_foreach_normRuntimeErrortyper$   r%   
logical_orisnanisinfclampZ_foreach_mul_r&   r    Zmul_)r   r   r   r   r   gradsgrouped_gradsZnormsZ
total_normr+   _Z	clip_coefZclip_coef_clampedZclip_coef_clamped_devicer"   r   )r(   r   r   r      sH    

&"

c                 C   s   t jddd t| ||||S )zClips gradient norm of an iterable of parameters.

    .. warning::
        This method is now deprecated in favor of
        :func:`torch.nn.utils.clip_grad_norm_`.
    z[torch.nn.utils.clip_grad_norm is now deprecated in favor of torch.nn.utils.clip_grad_norm_.   )
stacklevel)warningswarnr   )r   r   r   r   r   r   r   r   r   W   s    	)r   
clip_valuer   r   c              
   C   s   t | tjr| g} t|}dd | D }t|g}| D ]\\}}\\}}|dksX|rtttt ||drt	ttt ||  t
ttt || q:|rtd|j dq:t & |D ]}tt|j| |d qW 5 Q R X q:dS )a  Clips gradient of an iterable of parameters at specified value.

    Gradients are modified in-place.

    Args:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        clip_value (float): maximum allowed value of the gradients.
            The gradients are clipped in the range
            :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]`
        foreach (bool): use the faster foreach-based implementation
            If ``None``, use the foreach implementation for CUDA and CPU native tensors and
            silently fall back to the slow implementation for other device types.
            Default: ``None``
    c                 S   s   g | ]}|j d k	r|j qS r   r   r   r   r   r   r   y   s     
 z$clip_grad_value_.<locals>.<listcomp>Nr*   r,   r-   )minr.   )r/   r#   r	   r0   r   r3   r   r   r   Z_foreach_clamp_min_Z_foreach_clamp_max_r5   r6   Zno_gradZclamp_)r   rB   r   r;   r<   r+   r=   r   r   r   r   r   e   s    
"
)r   FN)r   FN)N)r@   typingr   r   r   r   r   r   r   r#   r	   r
   Ztorch.utils._foreach_utilsr   r   Z_tensor_or_tensors__all__r0   boolr   r   r   r   r   r   r   <module>   s:   $
        L        