U
    9%e)                     @   s  d dl Z d dl mZ ddlmZmZmZmZmZmZ d dl	m
Z
mZ ddgZG dd deZd	d
e de de d e_de
e e
e e
e e
e ee eeeeeedddZe
e e
e e
e e
e eeeeeed
ddZe
e e
e e
e e
e eeeeeed
ddZdS )    N)Tensor   )	Optimizer_use_grad_for_differentiable_default_to_fused_or_foreach_differentiable_doc_foreach_doc_maximize_doc)ListOptionalAdadeltaadadeltac                       sV   e Zd Zddddee eed fd	d
Z fddZdd ZedddZ	  Z
S )r         ??ư>r   NF)maximizedifferentiable)foreachr   r   c          
   	      s   d|kst d| d|  kr*dks:n t d| d|ksPt d| d|ksft d| t|||||||d}	t ||	 d S )Ng        zInvalid learning rate: r   zInvalid rho value: zInvalid epsilon value: zInvalid weight_decay value: )lrrhoepsweight_decayr   r   r   )
ValueErrordictsuper__init__)
selfparamsr   r   r   r   r   r   r   defaults	__class__ S/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/optim/adadelta.pyr      s$    	zAdadelta.__init__c                    s@   t  | | jD ](}|dd  |dd |dd qd S )Nr   r   Fr   )r   __setstate__param_groups
setdefault)r   stategroupr   r!   r"   r#   ,   s
    
zAdadelta.__setstate__c                 C   s   |d D ]}|j d krq|| |j jr2td||j  | j| }t|dkrd|d< tj|tjd|d< tj|tjd|d< ||d  ||d  |d  d7  < qd S )	Nr   z*Adadelta does not support sparse gradientsr   step)Zmemory_format
square_avg	acc_deltar   )	gradappendZ	is_sparseRuntimeErrorr&   lentorchZ
zeros_likeZpreserve_format)r   r'   params_with_gradgradssquare_avgs
acc_deltaspr&   r!   r!   r"   _init_group3   s*    


 
 
zAdadelta._init_groupc                 C   s   d}|dk	r&t   | }W 5 Q R X | jD ]}g }g }g }g }|d |d |d |d |d |d |d f\}}	}
}}}}| ||||| t||||||	|
||||d	 q,|S )
zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   )r   r   r   r   r   r   r   )r/   Zenable_gradr$   r5   r   )r   closureZlossr'   r0   r1   r2   r3   r   r   r   r   r   r   r   r!   r!   r"   r(   M   s@    


zAdadelta.step)r   r   r   r   N)N)__name__
__module____qualname__r   boolr   r#   r5   r   r(   __classcell__r!   r!   r   r"   r      s"        	 a  Implements Adadelta algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
                \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
                \: \lambda \text{ (weight decay)}                                                \\
            &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)},
                \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\
            &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} +
                \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\
            &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho +
                 \Delta x^2_t  (1 - \rho)                                                        \\
            &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
    aD  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        rho (float, optional): coefficient used for computing a running average
            of squared gradients (default: 0.9)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-6)
        lr (float, optional): coefficient that scale delta before it is applied
            to the parameters (default: 1.0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _ADADELTA\: An Adaptive Learning Rate Method:
        https://arxiv.org/abs/1212.5701

    F)r   r1   r2   r3   r   r   r   r   r   r   r   c                C   sh   |dkrt | |dd\}}|r0tj r0td|rDtj sDt}nt}|| |||||||	|
|d
 dS )zvFunctional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    NF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)r   r   r   r   r   r   )r   r/   ZjitZis_scriptingr-   _multi_tensor_adadelta_single_tensor_adadelta)r   r1   r2   r3   r   r   r   r   r   r   r   _funcr!   r!   r"   r      s&    )
r   r1   r2   r3   r   r   r   r   r   r   c                C   s   t | |||D ]\}
}}}|s"|n| }|dkr>|j|
|d}t|
rft|}t|}t|}||j||d| d || }|| }|	r| }|	|| ||j||d| d t|
rt
|}|
j|| d qd S )Nr   alphar   value)zipaddr/   Z
is_complexZview_as_realZmul_Zaddcmul_Zsqrt_cloneZdiv_Zview_as_complexZadd_)r   r1   r2   r3   r   r   r   r   r   r   paramr+   r)   r*   stddeltar!   r!   r"   r=      s.       





r=   )
r   r1   r2   r3   r   r   r   r   r   r   c                C   s"  |	rt dt| dkrd S t| |||g}
|
 D ]\\}}}}}|rTt|}|dkr|rrtj|||d ntj|||d}t	|| tj
|||d| d t||}t| t||}t| t|| t	|| tj||| d t	|| tj
|||d| d q6d S )Nz#_foreach ops don't support autogradr   r@   r   rB   )AssertionErrorr.   r   Z"_group_tensors_by_device_and_dtypevaluesr/   Z_foreach_negZ_foreach_add_Z_foreach_addZ_foreach_mul_Z_foreach_addcmul_Z_foreach_sqrt_Z_foreach_div_)r   r1   r2   r3   r   r   r   r   r   r   Zgrouped_tensorsZdevice_paramsZdevice_gradsZdevice_square_avgsZdevice_acc_deltasr>   rH   Zdeltasr!   r!   r"   r<     s,    


r<   )NF)r/   r   Z	optimizerr   r   r   r   r   r	   typingr
   r   __all__r   __doc__r:   floatr   r=   r<   r!   r!   r!   r"   <module>   sf    q7  0)