U
    9%es0                     @   s6  d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	m
Z
 d dlmZmZ ddgZG dd deZd	d
e
 de	 de d e_dee ee ee ee ee ee eeeeeeedddZee ee ee ee ee eeeeeeedddZee ee ee ee ee eeeeeeedddZdS )    N)Tensor   )	Optimizer_use_grad_for_differentiable
_get_value_stack_if_compiling_default_to_fused_or_foreach_differentiable_doc_maximize_doc_foreach_doc)ListOptionalAdamaxadamaxc                       sV   e Zd Zddddee eed fd	d
Z fddZdd ZedddZ	  Z
S )r   Mb`?g?g+?:0yE>r   NF)maximizedifferentiable)foreachr   r   c          
   	      s   d|kst d| d|ks,t d| d|d   krDdk sXn t d|d  d|d   krpdk sn t d|d  d|kst d	| t|||||||d
}	t ||	 d S )N        zInvalid learning rate: zInvalid epsilon value: r   g      ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )lrbetasepsweight_decayr   r   r   )
ValueErrordictsuper__init__)
selfparamsr   r   r   r   r   r   r   defaults	__class__ Q/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/optim/adamax.pyr      s(    	zAdamax.__init__c                    s   t  | | jD ](}|dd  |dd |dd qt| j }t|dkoft	|d d }|s|D ]}t
t|d |d< qpd S )Nr   r   Fr   r   step)r   __setstate__param_groups
setdefaultliststatevalueslentorchZ	is_tensortensorfloat)r   r+   groupZstate_valuesZstep_is_tensorsr"   r$   r%   r'   .   s    

zAdamax.__setstate__c           	      C   s   |d D ]}|j d krq|| |j jr2td||j  | j| }t|dkrtd|d< tj|tj	d|d< tj|tj	d|d< ||d  ||d  ||d  qd S )	Nr    z(Adamax does not support sparse gradientsr   r   r&   )Zmemory_formatexp_avgexp_inf)
gradappendZ	is_sparseRuntimeErrorr+   r-   r.   r/   Z
zeros_likeZpreserve_format)	r   r1   params_with_gradgradsexp_avgsexp_infsstate_stepspr+   r$   r$   r%   _init_group<   s*    


 
 
zAdamax._init_groupc                 C   s   d}|dk	r&t   | }W 5 Q R X | jD ]}g }g }g }g }g }|d \}	}
|d }|d }|d }|d }|d }|d }| |||||| t|||||||	|
|||||d	 q,|S )
zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   )r   beta1beta2r   r   r   r   r   )r.   Zenable_gradr(   r>   r   )r   closureZlossr1   r8   r9   r:   r;   r<   r?   r@   r   r   r   r   r   r   r$   r$   r%   r&   U   sD    

zAdamax.step)r   r   r   r   N)N)__name__
__module____qualname__r   boolr   r'   r>   r   r&   __classcell__r$   r$   r"   r%   r      s"        	"a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    a
  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    F)r    r9   r:   r;   r<   r   r   r   r   r?   r@   r   r   c                C   s   t dd |D std|dkr4t| |dd\}}|rJtj rJtd|r^tj s^t}nt}|| ||||||	|
||||d dS )	zrFunctional API that performs adamax algorithm computation.

    See :class:`~torch.optim.Adamax` for details.
    c                 s   s   | ]}t |tjV  qd S )N)
isinstancer.   r   ).0tr$   r$   r%   	<genexpr>   s     zadamax.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)r   r?   r@   r   r   r   r   )allr7   r   r.   ZjitZis_scripting_multi_tensor_adamax_single_tensor_adamax)r    r9   r:   r;   r<   r   r   r   r   r?   r@   r   r   _funcr$   r$   r%   r      s2    )r    r9   r:   r;   r<   r   r?   r@   r   r   r   r   c                C   s*  t | D ]\}}|| }|
s"|n| }|| }|| }|| }|d7 }|	dkr^|j||	d}t|rt|}t|}t|}t|}||d|  t||d|	 
|dgd}|stj|dd|d n|tj|ddd d|t|  }|| }|j||| d qd S )Nr   r   alphaFkeepdimout)rS   )value)	enumerateaddr.   
is_complexview_as_realZlerp_catZmul_	unsqueezeabsadd_
unsqueeze_ZamaxZcopy_r   Zaddcdiv_)r    r9   r:   r;   r<   r   r?   r@   r   r   r   r   iparamr5   r3   r4   Zstep_tnorm_bufbias_correctionclrr$   r$   r%   rM      s2    




" rM   )r    r9   r:   r;   r<   r?   r@   r   r   r   r   r   c             	      s  |rt dt| dkrd S t| ||||g}| D ]@\\}}}}}}|
rZt|}dd |D }dd |D }dd |D }dd |D }t|d |dkr|
rtj|||d	 ntj|||d	}t	||d   t
|| t||D ]L\}}t|d| |	dgd}tj|dd
||  fd q fdd|D }tfdd|D }t|||| q8d S )Nz#_foreach ops don't support autogradr   c                 S   s$   g | ]}t |rt |n|qS r$   r.   rX   rY   rH   xr$   r$   r%   
<listcomp>8  s     z(_multi_tensor_adamax.<locals>.<listcomp>c                 S   s$   g | ]}t |rt |n|qS r$   rd   re   r$   r$   r%   rg   9  s     c                 S   s$   g | ]}t |rt |n|qS r$   rd   re   r$   r$   r%   rg   :  s     c                 S   s$   g | ]}t |rt |n|qS r$   rd   re   r$   r$   r%   rg   ;  s     r   rP   FrR   c                    s   g | ]}d  t |  qS )r   )r   )rH   r&   )r?   r$   r%   rg   S  s     c                    s   g | ]}d  |  qS )r$   )rH   rb   )r   r$   r%   rg   T  s     )AssertionErrorr-   r   Z"_group_tensors_by_device_and_dtyper,   r.   Z_foreach_negZ_foreach_add_Z_foreach_addZ_foreach_lerp_Z_foreach_mul_ziprZ   r[   r\   r]   r^   maxnewlongr   Z_foreach_addcdiv_)r    r9   r:   r;   r<   r?   r@   r   r   r   r   r   Zgrouped_tensorsZgrouped_paramsZgrouped_gradsZgrouped_exp_avgsZgrouped_exp_infsZgrouped_state_stepsrN   r4   r5   ra   Zbias_correctionsrc   r$   )r?   r   r%   rL     s6    
  rL   )NFF)r.   r   Z	optimizerr   r   r   r   r   r	   r
   r   typingr   r   __all__r   __doc__rE   r0   r   rM   rL   r$   r$   r$   r%   <module>   st   ({
5   85