U
    9%ecl                     @   s  d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZ d dlmZmZmZmZ d dlmZ ddgZG d	d deZd
de de
 de de	 de d e_dee ee ee ee ee ee ee eeee ee ee eeeeeef eeedddZee ee ee ee ee ee ee ee eeeeeef eeeeedddZee ee ee ee ee ee ee ee eeeeeef eeeeedddZee ee ee ee ee ee ee ee eeeeeef eeeeeddddZdS )    N)Tensor   )	Optimizer_use_grad_for_differentiable
_get_value_dispatch_sqrt_stack_if_compiling_capturable_doc_differentiable_doc_foreach_doc
_fused_doc_maximize_doc_default_to_fused_or_foreachparams_t)ListOptionalTupleUnion)$_get_fused_kernels_supported_devicesAdamWadamwc                       s   e Zd Zdddddddeeeef eeef eeeee	e eee	e d fd	d
Z
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>{Gz?FN)maximizeforeach
capturabledifferentiablefused)paramslrbetasepsweight_decayamsgradr   r   r   r   r   c                   s8  d|kst d| t|tr0|r0|	s0t dd|ksFt d| d|d   kr^dk srn t d|d  d|d   krdk sn t d	|d  d|kst d
| t||||||||	|
|d
}t || |r4|
rtdd| _t  t	 fdd| j
D s&td  d|r4tdd S )N        zInvalid learning rate: Elr as a Tensor is not supported for capturable=False and foreach=TruezInvalid epsilon value: r   g      ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )
r!   r"   r#   r$   r%   r   r   r   r   r   z)`fused` does not support `differentiable`Tc                 3   s2   | ]*}|d  D ]}|j j ko&t|V  qqdS )r    N)devicetypetorchZis_floating_point).0ZpgpZfused_supported_devices P/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/optim/adamw.py	<genexpr>?   s
    
 z!AdamW.__init__.<locals>.<genexpr>zX`fused=True` requires all the params to be floating point Tensors of supported devices: .z0`fused` and `foreach` cannot be `True` together.)
ValueError
isinstancer   dictsuper__init__RuntimeErrorZ_step_supports_amp_scalingr   allparam_groups)selfr    r!   r"   r#   r$   r%   r   r   r   r   r   defaults	__class__r-   r/   r6      sH    
zAdamW.__init__c                    s   t  | | jD ]L}|dd |dd |dd  |dd |dd |dd  qt| j }t|dkot	|d d	 }|s|D ]}t
t|d	 |d	< qd S )
Nr%   Fr   r   r   r   r   r   step)r5   __setstate__r9   
setdefaultliststatevalueslenr*   Z	is_tensortensorfloat)r:   rB   groupZstate_valuesZstep_is_tensorsr<   r.   r/   r?   I   s    

zAdamW.__setstate__c	                 C   sX  |d D ]H}	|	j d krq||	 |	j jr4td||	j  | j|	 }
t|
dkr|d sf|d rztjdtj|	j	dnt
d|
d	< tj|	tjd
|
d< tj|	tjd
|
d< |rtj|	tjd
|
d< ||
d  ||
d  |d r||
d  |d r|
d	 jrtd|d rDt|d trD|d sDtd||
d	  qd S )Nr    z'AdamW does not support sparse gradientsr   r   r   r.   )Zdtyper(   r&   r>   )Zmemory_formatexp_avg
exp_avg_sqmax_exp_avg_sqr%   r   zB`requires_grad` is not supported for `step` in differentiable moder   r!   r'   )gradappendZ	is_sparser7   rB   rD   r*   ZzerosrF   r(   rE   Z
zeros_likeZpreserve_formatZrequires_gradr3   r   )r:   rG   params_with_gradgradsr%   exp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepsr,   rB   r.   r.   r/   _init_groupZ   sJ    


 
 
 
$zAdamW._init_groupc                 C   s   |    d}|dk	r.t  | }W 5 Q R X | jD ]}g }g }g }g }g }g }	|d }
|d \}}| ||||
||||	 t||||||	|
|||d |d |d |d |d |d	 |d
 |d t| ddt| ddd q4|S )zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr%   r"   r!   r$   r#   r   r   r   r   r   
grad_scale	found_inf)r%   beta1beta2r!   r$   r#   r   r   r   r   r   rU   rV   )Z _cuda_graph_capture_health_checkr*   Zenable_gradr9   rT   r   getattr)r:   closureZlossrG   rN   rO   rP   rQ   rR   rS   r%   rW   rX   r.   r.   r/   r>      s\    



z
AdamW.step)r   r   r   r   F)N)__name__
__module____qualname__r   r   rF   r   r   boolr   r6   r?   rT   r   r>   __classcell__r.   r.   r<   r/   r      s8        	

<:a  Implements AdamW algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{(lr)}, \: \beta_1, \beta_2
                \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)},
                \: \epsilon \text{ (epsilon)}                                                    \\
            &\hspace{13mm}      \lambda \text{(weight decay)},  \: \textit{amsgrad},
                \: \textit{maximize}                                                             \\
            &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0
                \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0              \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}         \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
                \widehat{v_t})                                                                   \\
            &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big)                                 \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay coefficient (default: 1e-2)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        z	
        z
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    F)r    rO   rP   rQ   rR   rS   r   r   r   r   rU   rV   r%   rW   rX   r!   r$   r#   r   c                C   s   t j s$tdd |D s$td|	dkr\|dkr\t| |dd\}}|r\t|tr\|s\d}|	dkrhd}	|dkrtd}|rt j	 rtd|	rt j	 rtd|	rt j	 st
}n|rt j	 st}nt}|| |||||||||||||||
|d	 dS )
zpFunctional API that performs AdamW algorithm computation.

    See :class:`~torch.optim.AdamW` for details.
    c                 s   s   | ]}t |tjV  qd S N)r3   r*   r   )r+   tr.   r.   r/   r0   0  s     zadamw.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizersz4torch.jit.script not supported with fused optimizers)r%   rW   rX   r!   r$   r#   r   r   r   rU   rV   )r*   _utilsis_compilingr8   r7   r   r3   r   jitis_scripting_fused_adamw_multi_tensor_adamw_single_tensor_adamw)r    rO   rP   rQ   rR   rS   r   r   r   r   rU   rV   r%   rW   rX   r!   r$   r#   r   _funcr.   r.   r/   r     sP    )r    rO   rP   rQ   rR   rS   rU   rV   r%   rW   rX   r!   r$   r#   r   r   r   c       	         C   s  |d kr|d kst tj r,t|ts,t t| D ]^\}}|sJ|| n||  }|| }|| }|| }tj s|r|j	r|j	s|j
r|j
st dt|rt|}t|}t|}|rt|| ||< t|}|d7 }|d||   ||d|	  ||
j||d|
 d |s2|r|}d|	|  }d|
|  }|| }| }| }|r|r||  }n|| }|| t|| ||  ||  || }n| ||  || }||| nt|}d|	|  }d|
|  }|| }t|}|rLtj|| ||| d ||  | |}n| | |}|j||| d |r4t| | r4t|| ||< q4d S )NzGIf capturable=True, params and state_steps must be CUDA or XLA tensors.r   )value)out)AssertionErrorr*   rd   re   r3   rF   	enumeraterb   rc   is_cudaZis_xla
is_complexview_as_realZmul_Zlerp_Zaddcmul_negsqrtcloneZcopy_maximumZadd_Zaddcdiv_r   r   Zview_as_complex)r    rO   rP   rQ   rR   rS   rU   rV   r%   rW   rX   r!   r$   r#   r   r   r   iparamrL   rI   rJ   Zstep_tr>   bias_correction1bias_correction2	step_sizeZstep_size_negbias_correction2_sqrtrK   denomr.   r.   r/   rh   d  s~    





rh   c       	            s  t | dkrd S ttr&|s&tdtj sT|rTtdd t| |D sTt	d|r`t	d|d krp|d kstt	t
| |||||g}| D ]"\\}}}}}}}|rt|}dd |D }d	d |D }d
d |D }dd |D }dd |D }t|d |dkr&t|d|   t||d   t| t|||d  ~|rt |}t|}t|d t|d t| t| t| t| |}|}|rt|| t|}n
t|}t|| t|| t|| t||| q fdd|D }fdd|D }tfdd|D }dd |D }|rt|| t|}n
t|}t|| t|| t|||| qd S )Nr   r'   c                 s   s   | ]\}}|j o|j V  qd S r`   )ro   )r+   r,   r>   r.   r.   r/   r0     s    z&_multi_tensor_adamw.<locals>.<genexpr>z@If capturable=True, params and state_steps must be CUDA tensors.z#_foreach ops don't support autogradc                 S   s$   g | ]}t |rt |n|qS r.   r*   rp   rq   r+   xr.   r.   r/   
<listcomp>
  s     z'_multi_tensor_adamw.<locals>.<listcomp>c                 S   s$   g | ]}t |rt |n|qS r.   r}   r~   r.   r.   r/   r     s     c                 S   s$   g | ]}t |rt |n|qS r.   r}   r~   r.   r.   r/   r     s    c                 S   s$   g | ]}t |rt |n|qS r.   r}   r~   r.   r.   r/   r     s    c                 S   s$   g | ]}t |rt |n|qS r.   r}   r~   r.   r.   r/   r     s     r   c                    s   g | ]}d  t |  qS r   r   r+   r>   )rW   r.   r/   r   I  s     c                    s   g | ]}d  t |  qS r   r   r   )rX   r.   r/   r   J  s     c                    s   g | ]} | d  qS )r.   r+   bc)r!   r.   r/   r   L  s     c                 S   s   g | ]}t |qS r.   )r   r   r.   r.   r/   r   N  s     )rD   r3   r   r7   r*   rb   rc   r8   ziprm   r   "_group_tensors_by_device_and_dtyperC   Z_foreach_neg_foreach_add_Z_foreach_mul_Z_foreach_lerp_Z_foreach_addcmul_Z_foreach_pow_foreach_sub_Z_foreach_neg_Z_foreach_div_Z_foreach_reciprocal_Z_foreach_sqrt_Z_foreach_maximum_Z_foreach_sqrtZ_foreach_addcdiv_r   )r    rO   rP   rQ   rR   rS   rU   rV   r%   rW   rX   r!   r$   r#   r   r   r   grouped_tensorsdevice_paramsdevice_gradsdevice_exp_avgsdevice_exp_avg_sqsdevice_max_exp_avg_sqsdevice_state_stepsri   rx   ry   rz   r{   Zexp_avg_sq_sqrtr.   )rW   rX   r!   r/   rg     s    
     	







rg   )r    rO   rP   rQ   rR   rS   rU   rV   r%   rW   rX   r!   r$   r#   r   r   r   returnc       	         C   s  | sd S |rt d|d k	r&|j|ind }|d k	r<|j|ind }t|trbt|jdkrb|j|ind }t| |||||g}| D ]\\}}\\}}}}}}}d\}}|d k	r||kr|j|dd||< || }|d k	r||kr|j|dd||< || }|d k	r*||kr*|j|dd||< || }t	
|d t	j|||||||||	|
|||||d |d k	rt	||gt|  qd S )	Nz9Adam with fused=True does not support differentiable=Truecpu)NNT)non_blocking)r(   r   r   )	r%   r!   rW   rX   r$   r#   r   rU   rV   )r7   r(   r3   r   strr   r   itemstor*   r   Z_fused_adamw_r   rD   )r    rO   rP   rQ   rR   rS   rU   rV   r%   rW   rX   r!   r$   r#   r   r   r   Zgrad_scale_dictZfound_inf_dictZlr_dictr   r(   ri   r   r   r   r   r   r   Zdevice_grad_scaleZdevice_found_infr.   r.   r/   rf   ^  sd    & rf   )NFFNNN)r*   r   Z	optimizerr   r   r   r   r   r	   r
   r   r   r   r   r   typingr   r   r   r   Ztorch.utils._foreach_utilsr   __all__r   __doc__r^   rF   r   rh   rg   rf   r.   r.   r.   r/   <module>   s   8 F&K      
R
v
 
