U
    9%e+                     @   s  d Z ddlZddlZddlZddlmZmZmZm	Z	m
Z
 ddlZejejejejejgZejejejejgZejejejgZejfeZeeZejeeejdddZ ddddddde
e!ej"ee! e	e!d	f f ej#e
e$ej%f ee ee eeeeej& ejd

ddZ'dS )z1
This module contains tensor creation utilities.
    N)castListOptionalTupleUnion)tlowhighreturnc                 C   s@   || t | jjkr0| |d |d dS | ||S d S )N   )torchfinfodtypemaxZuniform_Zmul_)r   r   r	    r   V/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/testing/_creation.py_uniform_random_   s    r   F)r   r	   requires_gradnoncontiguousexclude_zeromemory_format.)
shaper   devicer   r	   r   r   r   r   r
   c              
      sR  t t t t tttttttf d fdd}	t|dkrTt|d tjjrT|d }ttt	df t
|}|r|dk	rtd|d	||r tkrtd
  tjkrttt	t	f |	||ddddd\}}tj|||| d}
nވ tkrTttt	t	f |	||t jt j tjk	r*dnd ddd\}}tj|||| d}
nt tkr|	||t jt jddd\}}tj|| d}
t tkrt|
n|
|| ntd  d|r |
 dkr tj|
ddd}
|
ddddf }
n|dk	r|
j|d}
|r> tkr*dn
t j|
|
dk<  tkrN||
_|
S )as  Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
    values uniformly drawn from ``[low, high)``.

    If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
    finite values then they are clamped to the lowest or highest representable finite value, respectively.
    If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
    which depend on :attr:`dtype`.

    +---------------------------+------------+----------+
    | ``dtype``                 | ``low``    | ``high`` |
    +===========================+============+==========+
    | boolean type              | ``0``      | ``2``    |
    +---------------------------+------------+----------+
    | unsigned integral type    | ``0``      | ``10``   |
    +---------------------------+------------+----------+
    | signed integral types     | ``-9``     | ``10``   |
    +---------------------------+------------+----------+
    | floating types            | ``-9``     | ``9``    |
    +---------------------------+------------+----------+
    | complex types             | ``-9``     | ``9``    |
    +---------------------------+------------+----------+

    Args:
        shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
        dtype (:class:`torch.dtype`): The data type of the returned tensor.
        device (Union[str, torch.device]): The device of the returned tensor.
        low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
            clamped to the least representable finite value of the given dtype. When ``None`` (default),
            this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
        high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
            clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
            is determined based on the :attr:`dtype` (see the table above). Default: ``None``.

            .. deprecated:: 2.1

                Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated
                since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead.

        requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
        noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
            ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``.
        exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
            depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
            point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
            :attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
            whose real and imaginary parts are both the smallest positive normal number representable by the complex
            type. Default ``False``.
        memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive
            with ``noncontiguous``.

    Raises:
        ValueError: If ``requires_grad=True`` is passed for integral `dtype`
        ValueError: If ``low >= high``.
        ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
        ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed.
        TypeError: If :attr:`dtype` isn't supported by this function.

    Examples:
        >>> # xdoctest: +SKIP
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> from torch.testing import make_tensor
        >>> # Creates a float tensor with values in [-1, 1)
        >>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
        >>> # xdoctest: +SKIP
        tensor([ 0.1205, 0.2282, -0.6380])
        >>> # Creates a bool tensor on CUDA
        >>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
        tensor([[False, False],
                [False, True]], device='cuda:0')
    )r   r	   lowest_inclusivehighest_exclusivedefault_lowdefault_highr
   c                   s  t t t t ddd}| dk	r | n|} |dk	r0|n|}tdd | |fD r`td| d|nt| |kr~ tkr~td	t nV| |krtd
|  d| n8||k s| |krtd|  d| d  d| d| d|| ||} ||||} tkr
t	| t	|fS | |fS )z
        Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high)
        if required.
        )alhr
   c                 S   s   t t| ||S N)minr   )r   r   r   r   r   r   clamp|   s    z3make_tensor.<locals>.modify_low_high.<locals>.clampNc                 s   s"   | ]}t |tot|V  qd S r    )
isinstancefloatmathisnan).0valuer   r   r   	<genexpr>   s     z7make_tensor.<locals>.modify_low_high.<locals>.<genexpr>z,`low` and `high` cannot be NaN, but got low=z
 and high=zPassing `low==high` to `torch.testing.make_tensor` for floating or complex types is deprecated since 2.1 and will be removed in 2.3. Use torch.full(...) instead.z(`low` must be less than `high`, but got z >= z5The value interval specified by `low` and `high` is [z, z), but z only supports [))
r$   any
ValueError_FLOATING_OR_COMPLEX_TYPESwarningswarnFutureWarning_BOOLEAN_OR_INTEGRAL_TYPESr%   ceil)r   r	   r   r   r   r   r"   r   r   r   modify_low_highn   s.    "
z$make_tensor.<locals>.modify_low_high   r   .NzaThe parameters `noncontiguous` and `memory_format` are mutually exclusive, but got noncontiguous=z and memory_format=zU`requires_grad=True` is not supported for boolean and integral dtypes, but got dtype=r   )r   r   r   r   )r   r   i
   	   zThe requested dtype 'z' is not supported by torch.testing.make_tensor(). To request support, file an issue at: https://github.com/pytorch/pytorch/issues)dim)r   ) r   r$   r   lenr#   collectionsabcSequencer   inttupler,   r1   r   boolrandintZiinfor!   r   int64r-   r   emptyr   _COMPLEX_TYPESZview_as_real	TypeErrorZnumelZrepeat_interleavecloneZtinyr   )r   r   r   r	   r   r   r   r   r   r4   resultr   r3   r   make_tensor   s    S
2









  



rH   )(__doc__collections.abcr;   r%   r.   typingr   r   r   r   r   r   Zuint8Zint8Zint16Zint32rB   Z_INTEGRAL_TYPESZfloat16Zbfloat16Zfloat32Zfloat64Z_FLOATING_TYPESZ	complex32Z	complex64Z
complex128rD   r@   r1   r-   ZTensorr$   r   r>   Sizer   strr   r   rH   r   r   r   r   <module>   s:   