U
    9%e
1                     @   s   d dl Z d dl mZ d dlmZmZmZmZmZmZm	Z	m
Z
mZ dddddd	gZed
ddZG dd de	e ZG dd dee ZG dd dee ZG dd dee ZG dd	 d	ee ZG dd deee  ZdS )    N)Tensor)	IteratorIterableOptionalSequenceListTypeVarGenericSizedUnionBatchSamplerRandomSamplerSamplerSequentialSamplerSubsetRandomSamplerWeightedRandomSamplerT_coT)	covariantc                   @   s8   e Zd ZdZd	ee ddddZee dddZ	dS )
r   a/  Base class for all Samplers.

    Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
    way to iterate over indices or lists of indices (batches) of dataset elements, and a :meth:`__len__` method
    that returns the length of the returned iterators.

    Args:
        data_source (Dataset): This argument is not used and will be removed in 2.2.0.
            You may still have custom implementation that utilizes it.

    Example:
        >>> # xdoctest: +SKIP
        >>> class AccedingSequenceLengthSampler(Sampler[int]):
        >>>     def __init__(self, data: List[str]) -> None:
        >>>         self.data = data
        >>>
        >>>     def __len__(self) -> int:
        >>>         return len(self.data)
        >>>
        >>>     def __iter__(self) -> Iterator[int]:
        >>>         sizes = torch.tensor([len(x) for x in self.data])
        >>>         yield from torch.argsort(sizes).tolist()
        >>>
        >>> class AccedingSequenceLengthBatchSampler(Sampler[List[int]]):
        >>>     def __init__(self, data: List[str], batch_size: int) -> None:
        >>>         self.data = data
        >>>         self.batch_size = batch_size
        >>>
        >>>     def __len__(self) -> int:
        >>>         return (len(self.data) + self.batch_size - 1) // self.batch_size
        >>>
        >>>     def __iter__(self) -> Iterator[List[int]]:
        >>>         sizes = torch.tensor([len(x) for x in self.data])
        >>>         for batch in torch.chunk(torch.argsort(sizes), len(self)):
        >>>             yield batch.tolist()

    .. note:: The :meth:`__len__` method isn't strictly required by
              :class:`~torch.utils.data.DataLoader`, but is expected in any
              calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
    Ndata_sourcereturnc                 C   s   |d k	rdd l }|d d S )Nr   zz`data_source` argument is not used and will be removed in 2.2.0.You may still have custom implementation that utilizes it.)warningswarn)selfr   r    r   W/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/torch/utils/data/sampler.py__init__<   s    zSampler.__init__r   c                 C   s   t d S N)NotImplementedErrorr   r   r   r   __iter__C   s    zSampler.__iter__)N)
__name__
__module____qualname____doc__r   r
   r   r   r   r!   r   r   r   r   r      s   )c                   @   sJ   e Zd ZU dZeed< eddddZee ddd	Z	edd
dZ
dS )r   z~Samples elements sequentially, always in the same order.

    Args:
        data_source (Dataset): dataset to sample from
    r   Nr   c                 C   s
   || _ d S r   )r   )r   r   r   r   r   r   j   s    zSequentialSampler.__init__r   c                 C   s   t tt| jS r   )iterrangelenr   r    r   r   r   r!   m   s    zSequentialSampler.__iter__c                 C   s
   t | jS r   )r(   r   r    r   r   r   __len__p   s    zSequentialSampler.__len__)r"   r#   r$   r%   r
   __annotations__r   r   intr!   r)   r   r   r   r   r   b   s
   
c                   @   sn   e Zd ZU dZeed< eed< deeee ddddZ	e
ed	d
dZee d	ddZed	ddZdS )r   a  Samples elements randomly. If without replacement, then sample from a shuffled dataset.
    If with replacement, then user can specify :attr:`num_samples` to draw.

    Args:
        data_source (Dataset): dataset to sample from
        replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
        num_samples (int): number of samples to draw, default=`len(dataset)`.
        generator (Generator): Generator used in sampling.
    r   replacementFN)r   r,   num_samplesr   c                 C   s^   || _ || _|| _|| _t| jts4td| j t| jtrJ| jdkrZt	d| j d S )N;replacement should be a boolean value, but got replacement=r   Dnum_samples should be a positive integer value, but got num_samples=)
r   r,   _num_samples	generator
isinstancebool	TypeErrorr-   r+   
ValueError)r   r   r,   r-   r1   r   r   r   r      s    zRandomSampler.__init__r   c                 C   s   | j d krt| jS | j S r   )r0   r(   r   r    r   r   r   r-      s    

zRandomSampler.num_samplesc              	   c   s  t | j}| jd krDttjdtjd  }t	 }|
| n| j}| jrt| jd D ](}tttj|dtj|d E d H  q^tj|| jd ftj|d}tt| E d H  n^t| j| D ]"}tttj||d E d H  qtttj||dd | j|   E d H  d S )Nr   dtype    )r8   )highsizer7   r1   r1   )r(   r   r1   r+   torchemptyZint64Zrandom_item	GeneratorZmanual_seedr,   r'   r-   maprandintnumpyrandperm)r   nseedr1   _Zfinal_samplesr   r   r   r!      s    

& zRandomSampler.__iter__c                 C   s   | j S r   r-   r    r   r   r   r)      s    zRandomSampler.__len__)FNN)r"   r#   r$   r%   r
   r*   r3   r   r+   r   propertyr-   r   r!   r)   r   r   r   r   r   t   s   
	     c                   @   sT   e Zd ZU dZee ed< dee ddddZee ddd	Z	edd
dZ
dS )r   zSamples elements randomly from a given list of indices, without replacement.

    Args:
        indices (sequence): a sequence of indices
        generator (Generator): Generator used in sampling.
    indicesN)rI   r   c                 C   s   || _ || _d S r   )rI   r1   )r   rI   r1   r   r   r   r      s    zSubsetRandomSampler.__init__r   c                 c   s,   t jt| j| jdD ]}| j| V  qd S Nr;   )r<   rC   r(   rI   r1   )r   ir   r   r   r!      s    zSubsetRandomSampler.__iter__c                 C   s
   t | jS r   )r(   rI   r    r   r   r   r)      s    zSubsetRandomSampler.__len__)N)r"   r#   r$   r%   r   r+   r*   r   r   r!   r)   r   r   r   r   r      s
   
c                   @   sd   e Zd ZU dZeed< eed< eed< dee	 eedddd	Z
ee d
ddZed
ddZdS )r   aN  Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).

    Args:
        weights (sequence)   : a sequence of weights, not necessary summing up to one
        num_samples (int): number of samples to draw
        replacement (bool): if ``True``, samples are drawn with replacement.
            If not, they are drawn without replacement, which means that when a
            sample index is drawn for a row, it cannot be drawn again for that row.
        generator (Generator): Generator used in sampling.

    Example:
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
        [4, 4, 1, 4, 5]
        >>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
        [0, 1, 4, 3, 2]
    weightsr-   r,   TN)rL   r-   r,   r   c                 C   s   t |trt |ts|dkr*td| t |tsBtd| tj|tjd}t|jdkrttdt	|j || _
|| _|| _|| _d S )Nr   r/   r.   r6      z=weights should be a 1d sequence but given weights have shape )r2   r+   r3   r5   r<   Z	as_tensordoubler(   shapetuplerL   r-   r,   r1   )r   rL   r-   r,   r1   Zweights_tensorr   r   r   r      s    
zWeightedRandomSampler.__init__r   c                 c   s0   t j| j| j| j| jd}t| E d H  d S rJ   )r<   ZmultinomialrL   r-   r,   r1   r&   tolist)r   Zrand_tensorr   r   r   r!      s    zWeightedRandomSampler.__iter__c                 C   s   | j S r   rG   r    r   r   r   r)      s    zWeightedRandomSampler.__len__)TN)r"   r#   r$   r%   r   r*   r+   r3   r   floatr   r   r!   r)   r   r   r   r   r      s   
   
 c                   @   sX   e Zd ZdZeee ee f eeddddZ	e
ee  dddZedd	d
ZdS )r   ai  Wraps another sampler to yield a mini-batch of indices.

    Args:
        sampler (Sampler or Iterable): Base sampler. Can be any iterable object
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``

    Example:
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    N)sampler
batch_size	drop_lastr   c                 C   sX   t |trt |ts|dkr*td| t |tsBtd| || _|| _|| _d S )Nr   zBbatch_size should be a positive integer value, but got batch_size=z7drop_last should be a boolean value, but got drop_last=)r2   r+   r3   r5   rS   rT   rU   )r   rS   rT   rU   r   r   r   r     s    
zBatchSampler.__init__r   c                 #   s   | j rPt| j z" fddt| jD }|V  W q tk
rJ   Y qY qX qnbdg| j }d}| jD ]4}|||< |d7 }|| jkrf|V  d}dg| j }qf|dkr|d | V  d S )Nc                    s   g | ]}t  qS r   )next).0rF   Zsampler_iterr   r   
<listcomp>  s     z)BatchSampler.__iter__.<locals>.<listcomp>r   rM   )rU   r&   rS   r'   rT   StopIteration)r   batchZidx_in_batchidxr   rX   r   r!     s$    



zBatchSampler.__iter__c                 C   s4   | j rt| j| j S t| j| j d | j S d S )NrM   )rU   r(   rS   rT   r    r   r   r   r)   %  s    zBatchSampler.__len__)r"   r#   r$   r%   r   r   r+   r   r3   r   r   r   r!   r)   r   r   r   r   r      s   $)r<   r   typingr   r   r   r   r   r   r	   r
   r   __all__r   r   r+   r   r   r   r   r   r   r   r   r   <module>   s    ,	P80