U
    9%ed                     @   s  d dl Z d dlZd dlmZ d dlmZmZmZmZm	Z	m
Z
mZ d dlZd dlZd dlmZ ddlmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZm Z  e rd dl!Z"d dl#Z"e$e$e"j%j&e$dkre"j'j(Z)ne"j'Z)ere rd dl*Z*ed	ej+d
ed	 eej+ ed
 f Z,G dd deZ-dd Z.dd Z/dd Z0dd Z1ej+e2dddZ3d8e4ee, dddZ5ej+dddZ6d9ej+e	ee4e
e4df f  e-d d!d"Z7d:ej+e	ee-e8f  e4d#d$d%Z9d;ej+e-e
e4e4f d&d'd(Z:ee8eee
f f e2d)d*d+Z;ee8eee
f f e2d)d,d-Z<eee8eee
f f  e2d.d/d0Z=eee8eee
f f  e2d.d1d2Z>d<ee8d	f e	e? d	d3d4d5Z@G d6d7 d7ZAdS )=    N)BytesIO)TYPE_CHECKINGDictIterableListOptionalTupleUnion)version   )ExplicitEnumis_jax_tensoris_tf_tensoris_torch_availableis_torch_tensoris_vision_availablerequires_backendsto_numpy)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDIMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDOPENAI_CLIP_MEANOPENAI_CLIP_STDz9.1.0zPIL.Image.Imageztorch.Tensorc                   @   s   e Zd ZdZdZdS )ChannelDimensionZchannels_firstZchannels_lastN)__name__
__module____qualname__FIRSTLAST r    r    W/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/image_utils.pyr   @   s   r   c                 C   s   t  ot| tjjS N)r   
isinstancePILImageimgr    r    r!   is_pil_imageE   s    r(   c                 C   s8   t  rt| tjjp6t| tjp6t| p6t| p6t| S r"   )	r   r#   r$   r%   npndarrayr   r   r   r&   r    r    r!   is_valid_imageI   s    
r+   c                 C   s8   t | ttfr(| D ]}t|s dS qnt| s4dS dS )NFT)r#   listtuplevalid_imagesr+   )Zimgsr'   r    r    r!   r.   S   s    
r.   c                 C   s   t | ttfrt| d S dS )Nr   F)r#   r,   r-   r+   r&   r    r    r!   
is_batched_   s    r/   )imagereturnc                 C   s,   | j tjkrdS t| dko*t| dkS )zV
    Checks to see whether the pixel values have already been rescaled to [0, 1].
    Fr   r   )dtyper)   uint8minmax)r0   r    r    r!   is_scaled_imagee   s    r6      )expected_ndimsr1   c                 C   s   t | r| S t| tjjr | gS t| rx| j|d kr@t| } n4| j|krR| g} n"td|d  d| d| j d| S tdt|  ddS )	a  
    Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a batch of images, it is converted to a list of images.

    Args:
        images (`ImageInput`):
            Image of images to turn into a list of images.
        expected_ndims (`int`, *optional*, defaults to 3):
            Expected number of dimensions for a single input image. If the input image has a different number of
            dimensions, an error is raised.
    r   z%Invalid image shape. Expected either z or z dimensions, but got z dimensions.ztInvalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray, but got .N)	r/   r#   r$   r%   r+   ndimr,   
ValueErrortype)Zimagesr8   r    r    r!   make_list_of_imagesp   s     

r=   )r1   c                 C   s@   t | stdt|  t r8t| tjjr8t| S t	| S )NzInvalid image type: )
r+   r;   r<   r   r#   r$   r%   r)   arrayr   r&   r    r    r!   to_numpy_array   s
    
r?   .)r0   num_channelsr1   c                 C   s   |dk	r|nd}t |tr |fn|}| jdkr8d\}}n$| jdkrLd\}}ntd| j | j| |krptjS | j| |krtjS tddS )a[  
    Infers the channel dimension format of `image`.

    Args:
        image (`np.ndarray`):
            The image to infer the channel dimension of.
        num_channels (`int` or `Tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
            The number of channels of the image.

    Returns:
        The channel dimension of the image.
    Nr   r7   r7   )r         z(Unsupported number of image dimensions: z(Unable to infer channel dimension format)r#   intr:   r;   shaper   r   r   )r0   r@   Z	first_dimZlast_dimr    r    r!   infer_channel_dimension_format   s    



rF   )r0   input_data_formatr1   c                 C   sJ   |dkrt | }|tjkr$| jd S |tjkr8| jd S td| dS )a  
    Returns the channel dimension axis of the image.

    Args:
        image (`np.ndarray`):
            The image to get the channel dimension axis of.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the image. If `None`, will infer the channel dimension from the image.

    Returns:
        The channel dimension axis of the image.
    Nr7   r   Unsupported data format: )rF   r   r   r:   r   r;   )r0   rG   r    r    r!   get_channel_dimension_axis   s    



rI   )r0   channel_dimr1   c                 C   s^   |dkrt | }|tjkr.| jd | jd fS |tjkrL| jd | jd fS td| dS )a  
    Returns the (height, width) dimensions of the image.

    Args:
        image (`np.ndarray`):
            The image to get the dimensions of.
        channel_dim (`ChannelDimension`, *optional*):
            Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.

    Returns:
        A tuple of the image's height and width.
    NrH   )rF   r   r   rE   r   r;   )r0   rJ   r    r    r!   get_image_size   s    

rN   )
annotationr1   c                 C   sV   t | trRd| krRd| krRt | d ttfrRt| d dksNt | d d trRdS dS )Nimage_idannotationsr   TFr#   dictr,   r-   lenrO   r    r    r!   "is_valid_annotation_coco_detection   s    rV   c                 C   s^   t | trZd| krZd| krZd| krZt | d ttfrZt| d dksVt | d d trZdS dS )NrP   Zsegments_info	file_namer   TFrR   rU   r    r    r!   !is_valid_annotation_coco_panoptic   s     	rX   )rQ   r1   c                 C   s   t dd | D S )Nc                 s   s   | ]}t |V  qd S r"   )rV   .0annr    r    r!   	<genexpr>  s     z3valid_coco_detection_annotations.<locals>.<genexpr>allrQ   r    r    r!    valid_coco_detection_annotations  s    r`   c                 C   s   t dd | D S )Nc                 s   s   | ]}t |V  qd S r"   )rX   rY   r    r    r!   r\     s     z2valid_coco_panoptic_annotations.<locals>.<genexpr>r]   r_   r    r    r!   valid_coco_panoptic_annotations  s    ra   )r0   timeoutr1   c              
   C   s
  t tdg t| tr| ds*| drFtjtj	| d|dj
} qtj| r`tj| } q| drx| dd } z"tj| dd	}tjt|} W q tk
r } ztd
|  d| W 5 d}~X Y qX nt| tjjr| } ntdtj| } | d} | S )a3  
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
        timeout (`float`, *optional*):
            The timeout value in seconds for the URL request.

    Returns:
        `PIL.Image.Image`: A PIL Image.
    Zvisionzhttp://zhttps://T)streamrb   zdata:image/,r   )validatezIncorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got z. Failed with NzuIncorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image.RGB)r   
load_imager#   str
startswithr$   r%   openrequestsgetrawospathisfilesplitbase64	b64decoder   	Exceptionr;   ZImageOpsZexif_transposeconvert)r0   rb   Zb64er    r    r!   rg     s.    


rg   c                   @   s   e Zd ZdZdd ZdddZdd Zeje	e
ef ejd	d
dZdddZdd ZdddZd ddZdd Zdd Zd!ddZdS )"ImageFeatureExtractionMixinzD
    Mixin that contain utilities for preparing image features.
    c                 C   s4   t |tjjtjfs0t|s0tdt| dd S )Nz	Got type zS which is not supported, only `PIL.Image.Image`, `np.array` and `torch.Tensor` are.)r#   r$   r%   r)   r*   r   r;   r<   selfr0   r    r    r!   _ensure_format_supportedK  s    z4ImageFeatureExtractionMixin._ensure_format_supportedNc                 C   s   |  | t|r| }t|tjr|dkr@t|jd tj}|jdkrf|j	d dkrf|
ddd}|rr|d }|tj}tj|S |S )a"  
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        Nr   r7   rA   r   rB      )rz   r   numpyr#   r)   r*   flatZfloatingr:   rE   	transposeastyper3   r$   r%   Z	fromarray)ry   r0   rescaler    r    r!   to_pil_imageR  s    
z(ImageFeatureExtractionMixin.to_pil_imagec                 C   s&   |  | t|tjjs|S |dS )z
        Converts `PIL.Image.Image` to RGB format.

        Args:
            image (`PIL.Image.Image`):
                The image to convert.
        rf   )rz   r#   r$   r%   ru   rx   r    r    r!   convert_rgbp  s    
z'ImageFeatureExtractionMixin.convert_rgb)r0   scaler1   c                 C   s   |  | || S )z7
        Rescale a numpy image by scale amount
        )rz   )ry   r0   r   r    r    r!   r   ~  s    
z#ImageFeatureExtractionMixin.rescaleTc                 C   s   |  | t|tjjr"t|}t|r2| }|dkrLt|jd tj	n|}|rh| 
|tjd}|r|jdkr|ddd}|S )a  
        Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
        dimension.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to convert to a NumPy array.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
                default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
            channel_first (`bool`, *optional*, defaults to `True`):
                Whether or not to permute the dimensions of the image to put the channel dimension first.
        Nr   p?r7   rB   r   )rz   r#   r$   r%   r)   r>   r   r|   r}   integerr   r   float32r:   r~   )ry   r0   r   channel_firstr    r    r!   r?     s    

z*ImageFeatureExtractionMixin.to_numpy_arrayc                 C   sB   |  | t|tjjr|S t|r0|d}ntj|dd}|S )z
        Expands 2-dimensional `image` to 3 dimensions.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to expand.
        r   )Zaxis)rz   r#   r$   r%   r   Z	unsqueezer)   expand_dimsrx   r    r    r!   r     s    
z'ImageFeatureExtractionMixin.expand_dimsFc                 C   s@  |  | t|tjjr(| j|dd}n>|rft|tjrN| |tj	d}nt
|rf| | d}t|tjrt|tjst||j}t|tjst||j}n<t
|rddl}t||js||}t||js||}|jdkr0|jd dkr0||ddddf  |ddddf  S || | S dS )a  
        Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
        if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to normalize.
            mean (`List[float]` or `np.ndarray` or `torch.Tensor`):
                The mean (per channel) to use for normalization.
            std (`List[float]` or `np.ndarray` or `torch.Tensor`):
                The standard deviation (per channel) to use for normalization.
            rescale (`bool`, *optional*, defaults to `False`):
                Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
                happen automatically.
        T)r   r   r   Nr7   rA   )rz   r#   r$   r%   r?   r)   r*   r   r   r   r   floatr>   r2   torchZTensorZtensorr:   rE   )ry   r0   ZmeanZstdr   r   r    r    r!   	normalize  s,    


(z%ImageFeatureExtractionMixin.normalizec                 C   sT  |dk	r|nt j}| | t|tjjs4| |}t|trFt|}t|t	s^t
|dkrF|rt|t	rt||fn|d |d f}n|j\}}||kr||fn||f\}}	t|t	r|n|d }
||
kr|S |
t	|
|	 |  }}|dk	r,||
krtd| d| ||kr,t	|| | | }}||kr>||fn||f}|j||dS )a  
        Resizes `image`. Enforces conversion of input to PIL.Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to resize.
            size (`int` or `Tuple[int, int]`):
                The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
                matched to this.

                If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
                `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
                this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                The filter to user for resampling.
            default_to_square (`bool`, *optional*, defaults to `True`):
                How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
                square (`size`,`size`). If set to `False`, will replicate
                [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
                with support for resizing only the smallest edge and providing an optional `max_size`.
            max_size (`int`, *optional*, defaults to `None`):
                The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
                greater than `max_size` after being resized according to `size`, then the image is resized again so
                that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
                edge may be shorter than `size`. Only used if `default_to_square` is `False`.

        Returns:
            image: A resized `PIL.Image.Image`.
        Nr   r   zmax_size = zN must be strictly greater than the requested size for the smaller edge size = )resample)PILImageResamplingZBILINEARrz   r#   r$   r%   r   r,   r-   rD   rT   sizer;   resize)ry   r0   r   r   Zdefault_to_squaremax_sizewidthheightshortlongZrequested_new_shortZ	new_shortZnew_longr    r    r!   r     s0    


$



z"ImageFeatureExtractionMixin.resizec                 C   s  |  | t|ts||f}t|s0t|tjrp|jdkrD| |}|jd dkr`|jdd n|jdd }n|j	d |j	d f}|d |d  d }||d  }|d |d  d }||d  }t|t
jjr|||||fS |jd dkrdnd}|s4t|tjr|ddd}t|r4|ddd}|dkrz||d krz|dkrz||d krz|d||||f S |jdd	 t|d |d t|d |d f }	t|tjrtj||	d
}
nt|r||	}
|	d	 |d  d }||d  }|	d |d  d }||d  }||
d||||f< ||7 }||7 }||7 }||7 }|
dtd|t|
jd	 |td|t|
jd |f }
|
S )a  
        Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
        size given, it will be padded (so the returned result has the size asked).

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
                The image to resize.
            size (`int` or `Tuple[int, int]`):
                The size to which crop the image.

        Returns:
            new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
            height, width).
        rB   r   rA   r   NTF.rK   )rE   rL   )rz   r#   r-   r   r)   r*   r:   r   rE   r   r$   r%   cropr~   Zpermuter5   Z
zeros_likeZ	new_zerosr4   )ry   r0   r   Zimage_shapetopbottomleftrightr   Z	new_shapeZ	new_imageZtop_padZ
bottom_padZleft_padZ	right_padr    r    r!   center_crop*  sZ    



,
02

   z'ImageFeatureExtractionMixin.center_cropc                 C   s>   |  | t|tjjr"| |}|dddddddf S )a  
        Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
        `image` to a NumPy array if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
                be first.
        NrL   )rz   r#   r$   r%   r?   rx   r    r    r!   flip_channel_orderu  s    


z.ImageFeatureExtractionMixin.flip_channel_orderr   c                 C   sL   |dk	r|nt jj}| | t|t jjs6| |}|j||||||dS )a  
        Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
        counter clockwise around its centre.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
                rotating.

        Returns:
            image: A rotated `PIL.Image.Image`.
        N)r   expandcenter	translate	fillcolor)r$   r%   ZNEARESTrz   r#   r   rotate)ry   r0   Zangler   r   r   r   r   r    r    r!   r     s    

     z"ImageFeatureExtractionMixin.rotate)N)NT)F)NTN)Nr   NNN)r   r   r   __doc__rz   r   r   r)   r*   r	   r   rD   r   r?   r   r   r   r   r   r   r    r    r    r!   rw   F  s   

 
.
CKrw   )r7   )N)N)N)N)Brr   rn   ior   typingr   r   r   r   r   r   r	   r|   r)   rk   	packagingr
   utilsr   r   r   r   r   r   r   r   Zutils.constantsr   r   r   r   r   r   Z	PIL.Imager$   ZPIL.ImageOpsparse__version__base_versionr%   Z
Resamplingr   r   r*   Z
ImageInputr   r(   r+   r.   r/   boolr6   rD   r=   r?   rF   rh   rI   rN   rV   rX   r`   ra   r   rg   rw   r    r    r    r!   <module>   s^   $(
 


'
  !    $$ -