U
    9%e_                     @   s  d Z ddlZddlZddlmZ ddlmZmZmZmZ ddl	Z
ddlmZ ddlmZmZ ddlmZ dd	lmZ eeZeG d
d dZeG dd dZG dd dZG dd deZG dd deZG dd deZG dd deZG dd deZdS )zJ
Callbacks to use with the Trainer class and customize the training loop.
    N)	dataclass)DictListOptionalUnion)tqdm   )IntervalStrategy
has_length)TrainingArguments)loggingc                   @   s&  e Zd ZU dZdZee ed< dZe	ed< dZ
e	ed< dZe	ed< dZe	ed	< dZe	ed
< dZe	ed< dZeed< dZeeeef  ed< dZee ed< dZee ed< dZeed< dZeed< dZeed< dZeed< dZeeeeee	ef f ed< dd ZedddZeedddZ dS )TrainerStateaN
  
    A class containing the [`Trainer`] inner state that will be saved along the model and optimizer when checkpointing
    and passed to the [`TrainerCallback`].

    <Tip>

    In all this class, one step is to be understood as one update step. When using gradient accumulation, one update
    step may require several forward and backward passes: if you use `gradient_accumulation_steps=n`, then one update
    step requires going through *n* batches.

    </Tip>

    Args:
        epoch (`float`, *optional*):
            Only set during training, will represent the epoch the training is at (the decimal part being the
            percentage of the current epoch completed).
        global_step (`int`, *optional*, defaults to 0):
            During training, represents the number of update steps completed.
        max_steps (`int`, *optional*, defaults to 0):
            The number of update steps to do during the current training.
        logging_steps (`int`, *optional*, defaults to 500):
            Log every X updates steps
        eval_steps (`int`, *optional*):
            Run an evaluation every X steps.
        save_steps (`int`, *optional*, defaults to 500):
            Save checkpoint every X updates steps.
        total_flos (`float`, *optional*, defaults to 0):
            The total number of floating operations done by the model since the beginning of training (stored as floats
            to avoid overflow).
        log_history (`List[Dict[str, float]]`, *optional*):
            The list of logs done since the beginning of training.
        best_metric (`float`, *optional*):
            When tracking the best model, the value of the best metric encountered so far.
        best_model_checkpoint (`str`, *optional*):
            When tracking the best model, the value of the name of the checkpoint for the best model encountered so
            far.
        is_local_process_zero (`bool`, *optional*, defaults to `True`):
            Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
            several machines) main process.
        is_world_process_zero (`bool`, *optional*, defaults to `True`):
            Whether or not this process is the global main process (when training in a distributed fashion on several
            machines, this is only going to be `True` for one process).
        is_hyper_param_search (`bool`, *optional*, defaults to `False`):
            Whether we are in the process of a hyper parameter search using Trainer.hyperparameter_search. This will
            impact the way data will be logged in TensorBoard.
    Nepochr   global_step	max_stepsi  logging_steps
eval_steps
save_stepsnum_train_epochs
total_floslog_historybest_metricbest_model_checkpointTis_local_process_zerois_world_process_zeroFis_hyper_param_search
trial_nametrial_paramsc                 C   s   | j d krg | _ d S N)r   self r!   \/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/trainer_callback.py__post_init__d   s    
zTrainerState.__post_init__)	json_pathc              	   C   sB   t jt| dddd }t|ddd}|| W 5 Q R X dS )	zDSave the content of this instance in JSON format inside `json_path`.   T)indent	sort_keys
wutf-8encodingN)jsondumpsdataclassesasdictopenwrite)r    r$   Zjson_stringfr!   r!   r"   save_to_jsonh   s    zTrainerState.save_to_jsonc              	   C   s2   t |ddd}| }W 5 Q R X | f t|S )z3Create an instance from the content of `json_path`.rr*   r+   )r1   readr-   loads)clsr$   r3   textr!   r!   r"   load_from_jsonn   s    zTrainerState.load_from_json)!__name__
__module____qualname____doc__r   r   float__annotations__r   intr   r   r   r   r   r   r   r   r   strr   r   r   boolr   r   r   r   r   r#   r4   classmethodr:   r!   r!   r!   r"   r   "   s*   
/ r   c                   @   sf   e Zd ZU dZdZeed< dZeed< dZeed< dZ	eed< dZ
eed< dd	 Zd
d Zdd ZdS )TrainerControlaA  
    A class that handles the [`Trainer`] control flow. This class is used by the [`TrainerCallback`] to activate some
    switches in the training loop.

    Args:
        should_training_stop (`bool`, *optional*, defaults to `False`):
            Whether or not the training should be interrupted.

            If `True`, this variable will not be set back to `False`. The training will just stop.
        should_epoch_stop (`bool`, *optional*, defaults to `False`):
            Whether or not the current epoch should be interrupted.

            If `True`, this variable will be set back to `False` at the beginning of the next epoch.
        should_save (`bool`, *optional*, defaults to `False`):
            Whether or not the model should be saved at this step.

            If `True`, this variable will be set back to `False` at the beginning of the next step.
        should_evaluate (`bool`, *optional*, defaults to `False`):
            Whether or not the model should be evaluated at this step.

            If `True`, this variable will be set back to `False` at the beginning of the next step.
        should_log (`bool`, *optional*, defaults to `False`):
            Whether or not the logs should be reported at this step.

            If `True`, this variable will be set back to `False` at the beginning of the next step.
    Fshould_training_stopshould_epoch_stopshould_saveshould_evaluate
should_logc                 C   s
   d| _ dS )z<Internal method that resets the variable for a new training.FN)rF   r   r!   r!   r"   _new_training   s    zTrainerControl._new_trainingc                 C   s
   d| _ dS )z9Internal method that resets the variable for a new epoch.FN)rG   r   r!   r!   r"   
_new_epoch   s    zTrainerControl._new_epochc                 C   s   d| _ d| _d| _dS )z8Internal method that resets the variable for a new step.FN)rH   rI   rJ   r   r!   r!   r"   	_new_step   s    zTrainerControl._new_stepN)r;   r<   r=   r>   rF   rC   r@   rG   rH   rI   rJ   rK   rL   rM   r!   r!   r!   r"   rE   v   s   
rE   c                   @   s   e Zd ZdZeeedddZeeedddZeeedddZ	eeedd	d
Z
eeedddZeeedddZeeedddZeeedddZeeedddZeeedddZeeedddZeeedddZeeedddZdS )TrainerCallbacka  
    A class for objects that will inspect the state of the training loop at some events and take some decisions. At
    each of those events the following arguments are available:

    Args:
        args ([`TrainingArguments`]):
            The training arguments used to instantiate the [`Trainer`].
        state ([`TrainerState`]):
            The current state of the [`Trainer`].
        control ([`TrainerControl`]):
            The object that is returned to the [`Trainer`] and can be used to make some decisions.
        model ([`PreTrainedModel`] or `torch.nn.Module`):
            The model being trained.
        tokenizer ([`PreTrainedTokenizer`]):
            The tokenizer used for encoding the data.
        optimizer (`torch.optim.Optimizer`):
            The optimizer used for the training steps.
        lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`):
            The scheduler used for setting the learning rate.
        train_dataloader (`torch.utils.data.DataLoader`, *optional*):
            The current dataloader used for training.
        eval_dataloader (`torch.utils.data.DataLoader`, *optional*):
            The current dataloader used for training.
        metrics (`Dict[str, float]`):
            The metrics computed by the last evaluation phase.

            Those are only accessible in the event `on_evaluate`.
        logs  (`Dict[str, float]`):
            The values to log.

            Those are only accessible in the event `on_log`.

    The `control` object is the only one that can be changed by the callback, in which case the event that changes it
    should return the modified version.

    The argument `args`, `state` and `control` are positionals for all events, all the others are grouped in `kwargs`.
    You can unpack the ones you need in the signature of the event using them. As an example, see the code of the
    simple [`~transformer.PrinterCallback`].

    Example:

    ```python
    class PrinterCallback(TrainerCallback):
        def on_log(self, args, state, control, logs=None, **kwargs):
            _ = logs.pop("total_flos", None)
            if state.is_local_process_zero:
                print(logs)
    ```argsstatecontrolc                 K   s   dS )zS
        Event called at the end of the initialization of the [`Trainer`].
        Nr!   r    rP   rQ   rR   kwargsr!   r!   r"   on_init_end   s    zTrainerCallback.on_init_endc                 K   s   dS )z<
        Event called at the beginning of training.
        Nr!   rS   r!   r!   r"   on_train_begin   s    zTrainerCallback.on_train_beginc                 K   s   dS )z6
        Event called at the end of training.
        Nr!   rS   r!   r!   r"   on_train_end   s    zTrainerCallback.on_train_endc                 K   s   dS )z<
        Event called at the beginning of an epoch.
        Nr!   rS   r!   r!   r"   on_epoch_begin   s    zTrainerCallback.on_epoch_beginc                 K   s   dS )z6
        Event called at the end of an epoch.
        Nr!   rS   r!   r!   r"   on_epoch_end   s    zTrainerCallback.on_epoch_endc                 K   s   dS )z
        Event called at the beginning of a training step. If using gradient accumulation, one training step might take
        several inputs.
        Nr!   rS   r!   r!   r"   on_step_begin   s    zTrainerCallback.on_step_beginc                 K   s   dS )zU
        Event called at the end of an substep during gradient accumulation.
        Nr!   rS   r!   r!   r"   on_substep_end   s    zTrainerCallback.on_substep_endc                 K   s   dS )z
        Event called at the end of a training step. If using gradient accumulation, one training step might take
        several inputs.
        Nr!   rS   r!   r!   r"   on_step_end  s    zTrainerCallback.on_step_endc                 K   s   dS )z9
        Event called after an evaluation phase.
        Nr!   rS   r!   r!   r"   on_evaluate  s    zTrainerCallback.on_evaluatec                 K   s   dS )z=
        Event called after a successful prediction.
        Nr!   )r    rP   rQ   rR   metricsrT   r!   r!   r"   
on_predict  s    zTrainerCallback.on_predictc                 K   s   dS )z7
        Event called after a checkpoint save.
        Nr!   rS   r!   r!   r"   on_save  s    zTrainerCallback.on_savec                 K   s   dS )z;
        Event called after logging the last logs.
        Nr!   rS   r!   r!   r"   on_log  s    zTrainerCallback.on_logc                 K   s   dS )z7
        Event called after a prediction step.
        Nr!   rS   r!   r!   r"   on_prediction_step$  s    z"TrainerCallback.on_prediction_stepN)r;   r<   r=   r>   r   r   rE   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r_   r`   ra   rb   r!   r!   r!   r"   rN      s   1rN   c                   @   s.  e Zd ZdZdd Zdd Zdd Zdd	 Zed
d Z	e
eedddZe
eedddZe
eedddZe
eedddZe
eedddZe
eedddZe
eedddZe
eedddZe
eedddZe
eeddd Ze
eedd!d"Ze
eedd#d$Ze
eedd%d&Zd'd( Zd)S )*CallbackHandlerz>Internal class that just calls the list of callbacks in order.c                 C   sf   g | _ |D ]}| | q
|| _|| _|| _|| _d | _d | _tdd | j D sbt	
d| j  d S )Nc                 s   s   | ]}t |tV  qd S r   )
isinstanceDefaultFlowCallback.0cbr!   r!   r"   	<genexpr>9  s     z+CallbackHandler.__init__.<locals>.<genexpr>zThe Trainer will not work properly if you don't have a `DefaultFlowCallback` in its callbacks. You
should add one before training with `trainer.add_callback(DefaultFlowCallback). The current list ofcallbacks is
:)	callbacksadd_callbackmodel	tokenizer	optimizerlr_schedulertrain_dataloadereval_dataloaderanyloggerwarningcallback_list)r    rj   rl   rm   rn   ro   rh   r!   r!   r"   __init__.  s    zCallbackHandler.__init__c                 C   sh   t |tr| n|}t |tr"|n|j}|dd | jD krXtd| dd | j  | j| d S )Nc                 S   s   g | ]
}|j qS r!   )	__class__)rg   cr!   r!   r"   
<listcomp>D  s     z0CallbackHandler.add_callback.<locals>.<listcomp>zYou are adding a zH to the callbacks of this Trainer, but there is already one. The currentzlist of callbacks is
:)rd   typerw   rj   rs   rt   ru   append)r    callbackrh   Zcb_classr!   r!   r"   rk   A  s    
zCallbackHandler.add_callbackc                 C   sb   t |tr6| jD ]"}t ||r| j| |  S qn(| jD ] }||kr<| j| |  S q<d S r   rd   rz   rj   remover    r|   rh   r!   r!   r"   pop_callbackL  s    



zCallbackHandler.pop_callbackc                 C   sD   t |tr4| jD ] }t ||r| j|  d S qn| j| d S r   r}   r   r!   r!   r"   remove_callbackX  s    



zCallbackHandler.remove_callbackc                 C   s   d dd | jD S )Nr(   c                 s   s   | ]}|j jV  qd S r   )rw   r;   rf   r!   r!   r"   ri   c  s     z0CallbackHandler.callback_list.<locals>.<genexpr>)joinrj   r   r!   r!   r"   ru   a  s    zCallbackHandler.callback_listrO   c                 C   s   |  d|||S )NrU   
call_eventr    rP   rQ   rR   r!   r!   r"   rU   e  s    zCallbackHandler.on_init_endc                 C   s   d|_ | d|||S )NFrV   )rF   r   r   r!   r!   r"   rV   h  s    zCallbackHandler.on_train_beginc                 C   s   |  d|||S )NrW   r   r   r!   r!   r"   rW   l  s    zCallbackHandler.on_train_endc                 C   s   d|_ | d|||S )NFrX   )rG   r   r   r!   r!   r"   rX   o  s    zCallbackHandler.on_epoch_beginc                 C   s   |  d|||S )NrY   r   r   r!   r!   r"   rY   s  s    zCallbackHandler.on_epoch_endc                 C   s"   d|_ d|_d|_| d|||S )NFrZ   )rJ   rI   rH   r   r   r!   r!   r"   rZ   v  s    zCallbackHandler.on_step_beginc                 C   s   |  d|||S )Nr[   r   r   r!   r!   r"   r[   |  s    zCallbackHandler.on_substep_endc                 C   s   |  d|||S )Nr\   r   r   r!   r!   r"   r\     s    zCallbackHandler.on_step_endc                 C   s   d|_ | jd||||dS )NFr]   r^   )rI   r   r    rP   rQ   rR   r^   r!   r!   r"   r]     s    zCallbackHandler.on_evaluatec                 C   s   | j d||||dS )Nr_   r   r   r   r!   r!   r"   r_     s    zCallbackHandler.on_predictc                 C   s   d|_ | d|||S )NFr`   )rH   r   r   r!   r!   r"   r`     s    zCallbackHandler.on_savec                 C   s   d|_ | jd||||dS )NFra   )logs)rJ   r   )r    rP   rQ   rR   r   r!   r!   r"   ra     s    zCallbackHandler.on_logc                 C   s   |  d|||S )Nrb   r   r   r!   r!   r"   rb     s    z"CallbackHandler.on_prediction_stepc              
   K   sP   | j D ]D}t|||||f| j| j| j| j| j| jd|}|d k	r|}q|S )N)rl   rm   rn   ro   rp   rq   )rj   getattrrl   rm   rn   ro   rp   rq   )r    eventrP   rQ   rR   rT   r|   resultr!   r!   r"   r     s$    

zCallbackHandler.call_eventN)r;   r<   r=   r>   rv   rk   r   r   propertyru   r   r   rE   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r_   r`   ra   rb   r   r!   r!   r!   r"   rc   +  s*   	
rc   c                   @   s4   e Zd ZdZeeedddZeeedddZdS )re   zx
    A [`TrainerCallback`] that handles the default flow of the training loop for logs, evaluation and checkpoints.
    rO   c                 K   s   |j dkr|jrd|_|jtjkr8|j |j dkr8d|_|jtjkrf|j |j dkrf|j	|j krfd|_
|jtjkr|jdkr|j |j dkrd|_|j |jkrd|_|S )Nr   Tr   )r   Zlogging_first_steprJ   logging_strategyr	   ZSTEPSr   evaluation_strategyr   
eval_delayrI   save_strategyr   rH   r   rF   rS   r!   r!   r"   r\     s*    


zDefaultFlowCallback.on_step_endc                 K   sF   |j tjkrd|_|jtjkr0|j|jkr0d|_|jtjkrBd|_	|S )NT)
r   r	   EPOCHrJ   r   r   r   rI   r   rH   rS   r!   r!   r"   rY     s    z DefaultFlowCallback.on_epoch_endN)	r;   r<   r=   r>   r   r   rE   r\   rY   r!   r!   r!   r"   re     s   re   c                   @   sT   e Zd ZdZdd Zdd Zdd Zdd	d
Zdd Zdd Z	dddZ
dd ZdS )ProgressCallbackzU
    A [`TrainerCallback`] that displays the progress of training or evaluation.
    c                 C   s   d | _ d | _d S r   )training_barprediction_barr   r!   r!   r"   rv     s    zProgressCallback.__init__c                 K   s    |j rt|jdd| _d| _d S )NT)totaldynamic_ncolsr   )r   r   r   r   current_steprS   r!   r!   r"   rV     s    zProgressCallback.on_train_beginc                 K   s&   |j r"| j|j| j  |j| _d S r   )r   r   updater   r   rS   r!   r!   r"   r\     s    zProgressCallback.on_step_endNc                 K   sB   |j r>t|r>| jd kr2tt|| jd kdd| _| jd d S )NT)r   Zleaver   r   )r   r
   r   r   lenr   r   )r    rP   rQ   rR   rq   rT   r!   r!   r"   rb     s    
  z#ProgressCallback.on_prediction_stepc                 K   s$   |j r | jd k	r| j  d | _d S r   r   r   closerS   r!   r!   r"   r]     s    

zProgressCallback.on_evaluatec                 K   s$   |j r | jd k	r| j  d | _d S r   r   rS   r!   r!   r"   r_     s    

zProgressCallback.on_predictc                 K   s0   |j r,| jd k	r,|dd }| jt| d S Nr   )r   r   popr2   rB   r    rP   rQ   rR   r   rT   _r!   r!   r"   ra     s    zProgressCallback.on_logc                 K   s   |j r| j  d | _d S r   )r   r   r   rS   r!   r!   r"   rW     s    
zProgressCallback.on_train_end)N)N)r;   r<   r=   r>   rv   rV   r\   rb   r]   r_   ra   rW   r!   r!   r!   r"   r     s   

r   c                   @   s   e Zd ZdZdddZdS )PrinterCallbackz?
    A bare [`TrainerCallback`] that just prints the logs.
    Nc                 K   s   | dd }|jrt| d S r   )r   r   printr   r!   r!   r"   ra     s    zPrinterCallback.on_log)N)r;   r<   r=   r>   ra   r!   r!   r!   r"   r     s   r   c                   @   s>   e Zd ZdZdeee dddZdd Zd	d
 Z	dd Z
dS )EarlyStoppingCallbacka/  
    A [`TrainerCallback`] that handles early stopping.

    Args:
       early_stopping_patience (`int`):
            Use with `metric_for_best_model` to stop training when the specified metric worsens for
            `early_stopping_patience` evaluation calls.
       early_stopping_threshold(`float`, *optional*):
            Use with TrainingArguments `metric_for_best_model` and `early_stopping_patience` to denote how much the
            specified metric must improve to satisfy early stopping conditions. `

    This callback depends on [`TrainingArguments`] argument *load_best_model_at_end* functionality to set best_metric
    in [`TrainerState`]. Note that if the [`TrainingArguments`] argument *save_steps* differs from *eval_steps*, the
    early stopping will not occur until the next save step.
    r           )early_stopping_patienceearly_stopping_thresholdc                 C   s   || _ || _d| _d S )Nr   )r   r   early_stopping_patience_counter)r    r   r   r!   r!   r"   rv   (  s    zEarlyStoppingCallback.__init__c                 C   sV   |j rtjntj}|jd ks<|||jrDt||j | jkrDd| _n|  jd7  _d S )Nr   r   )Zgreater_is_betternpZgreaterlessr   absr   r   )r    rP   rQ   rR   metric_valueoperatorr!   r!   r"   check_metric_value.  s    

z(EarlyStoppingCallback.check_metric_valuec                 K   s8   |j std|jd k	s td|jtjks4tdd S )Nz<EarlyStoppingCallback requires load_best_model_at_end = Truez?EarlyStoppingCallback requires metric_for_best_model is definedzAEarlyStoppingCallback requires IntervalStrategy of steps or epoch)Zload_best_model_at_endAssertionErrormetric_for_best_modelr   r	   NOrS   r!   r!   r"   rV   9  s    
z$EarlyStoppingCallback.on_train_beginc                 K   sh   |j }|dsd| }||}|d krBtd| d d S | |||| | j| jkrdd|_d S )NZeval_z@early stopping required metric_for_best_model, but did not find z so early stopping is disabledT)	r   
startswithgetrs   rt   r   r   r   rF   )r    rP   rQ   rR   r^   rT   Zmetric_to_checkr   r!   r!   r"   r]   B  s    



z!EarlyStoppingCallback.on_evaluateN)r   r   )r;   r<   r=   r>   rA   r   r?   rv   r   rV   r]   r!   r!   r!   r"   r     s
   	r   )r>   r/   r-   r   typingr   r   r   r   numpyr   Z	tqdm.autor   Ztrainer_utilsr	   r
   Ztraining_argsr   utilsr   Z
get_loggerr;   rs   r   rE   rN   rc   re   r   r   r   r!   r!   r!   r"   <module>   s*   
S1 }22