U
    Ö9%eö  ã                   @   sB   d Z ddlmZ ddlmZ e e¡ZddiZG dd„ deƒZ	dS )	z BioGPT model configurationé   )ÚPretrainedConfig)Úloggingzmicrosoft/biogptz@https://huggingface.co/microsoft/biogpt/resolve/main/config.jsonc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚBioGptConfiga  
    This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an
    BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the BioGPT
    [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 42384):
            Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BioGptModel`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        layerdrop (`float`, *optional*, defaults to 0.0):
            Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        pad_token_id (`int`, *optional*, defaults to 1)
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0)
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2)
            End of stream token id.
        Example:

    ```python
    >>> from transformers import BioGptModel, BioGptConfig

    >>> # Initializing a BioGPT microsoft/biogpt style configuration
    >>> configuration = BioGptConfig()

    >>> # Initializing a model from the microsoft/biogpt style configuration
    >>> model = BioGptModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zbiogpté¥  é   é   é   é   Úgeluçš™™™™™¹?ç{®Gáz”?çê-™—q=Tç        é   é    é   c                    sx   || _ |	| _|| _|| _|| _|| _|| _|| _|| _|
| _	|| _
|| _|| _|| _|| _tƒ jf |||dœ|—Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_id)Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚlayer_norm_epsÚscale_embeddingÚ	use_cacheÚ	layerdropÚactivation_dropoutÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r   r   r   Úkwargs©Ú	__class__© ún/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/biogpt/configuration_biogpt.pyr%   a   s     zBioGptConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   r   TTr   r   r   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer%   Ú__classcell__r*   r*   r(   r+   r      s*   A                  ír   N)
r/   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr,   ÚloggerZ$BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r*   r*   r*   r+   Ú<module>   s   
 ÿ