U
    9%e@                  	   @   s   d Z ddlZddlmZ ddlmZ ddlmZ ee	Z
ddd	d
dddddZG dd deZG dd deZG dd deZdS )z Blip model configuration    N)Union   )PretrainedConfig)loggingzHhttps://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.jsonzOhttps://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.jsonzUhttps://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.jsonzVhttps://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.jsonzMhttps://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.jsonzNhttps://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.jsonzNhttps://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.jsonzOhttps://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json)zSalesforce/blip-vqa-basez Salesforce/blip-vqa-capfit-largez%Salesforce/blip-image-captioning-basez&Salesforce/blip-image-captioning-largezSalesforce/blip-itm-base-cocozSalesforce/blip-itm-large-cocozSalesforce/blip-itm-base-flikrzSalesforce/blip-itm-large-flikrc                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )BlipTextConfiga  
    This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
    text model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
    architectures](https://huggingface.co/Salesforce/blip-vqa-base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`BlipModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        encoder_hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers from the vision model.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        bos_token_id (`int`, *optional*, defaults to 30522):
            The id of the `beginning-of-sequence` token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the `end-of-sequence` token.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the `padding` token.
        sep_token_id (`int`, *optional*, defaults to 102):
            The id of the `separator` token.
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import BlipTextConfig, BlipTextModel

    >>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipTextConfig()

    >>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zblip_text_model<w                 gelu-q=        {Gz?:w     r   f   Tc                    sz   t  jf ||||d| || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _|| _|| _|| _d S )N)pad_token_idbos_token_ideos_token_idsep_token_id)super__init__
vocab_sizehidden_sizeencoder_hidden_sizeintermediate_sizeprojection_dimhidden_dropout_probnum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeattention_probs_dropout_prob
is_decoder	use_cache)selfr   r   r   r   r   r    r!   r"   r$   r#   r   r&   r%   r   r   r   r   r'   r(   kwargs	__class__ j/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/blip/configuration_blip.pyr   r   s.    zBlipTextConfig.__init__r   pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typebliptext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.Z_set_token_in_kwargsZget_config_dictgethasattrr2   loggerwarning	from_dictclsr0   r*   Zconfig_dictr-   r-   r.   from_pretrained   s    
 zBlipTextConfig.from_pretrained)r   r   r   r	   r   r
   r   r   r   r   r   r   r   r   r   r   r   TT__name__
__module____qualname____doc__r2   r   classmethodr   strosPathLiker@   __classcell__r-   r-   r+   r.   r   .   s0   A                   /r   c                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )BlipVisionConfiga
  
    This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
    BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
    configuration defaults will yield a similar configuration to that of the Blip-base
    [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import BlipVisionConfig, BlipVisionModel

    >>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipVisionConfig()

    >>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zblip_vision_modelr   r	   r   r
        r   h㈵>r   绽|=c                    sT   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|	| _|| _d S )N)r   r   r   r   r   r    r!   
patch_size
image_sizer%   attention_dropoutr#   r$   )r)   r   r   r   r    r!   rQ   rP   r$   r#   rR   r%   r*   r+   r-   r.   r      s    zBlipVisionConfig.__init__r   r/   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr2   r3   vision_configr5   r6   r7   r8   r>   r-   r-   r.   r@     s    
 z BlipVisionConfig.from_pretrained)r   r	   r   r
   r
   rL   rM   r   rN   r   rO   rA   r-   r-   r+   r.   rK      s    0           rK   c                       s:   e Zd ZdZdZd fdd	Zeeed	d
dZ	  Z
S )
BlipConfiga  
    [`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
    a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
    a configuration with the defaults will yield a similar configuration to that of the BLIP-base
    [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BlipTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BlipVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimentionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation.
        image_text_hidden_size (`int`, *optional*, defaults to 768):
            Dimentionality of the hidden state of the image-text fusion layer.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import BlipConfig, BlipModel

    >>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipConfig()

    >>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig

    >>> # Initializing a BLIPText and BLIPVision configuration
    >>> config_text = BlipTextConfig()
    >>> config_vision = BlipVisionConfig()

    >>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
    ```r3   Nr   /L
F@   c                    s   t  jf | |d kr$i }td |d kr:i }td tf || _tf || _| jj| j_	|| _
|| _d| _d| _|| _d S )NzO`text_config` is `None`. Initializing the `BlipTextConfig` with default values.zS`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.g      ?r   )r   r   r;   infor   r4   rK   rS   r   r   r   logit_scale_init_valueZinitializer_factorr%   image_text_hidden_size)r)   r4   rS   r   rX   rY   r*   r+   r-   r.   r   H  s    	

zBlipConfig.__init__r4   rS   c                 K   s   | f |  |  d|S )z
        Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
        configuration.

        Returns:
            [`BlipConfig`]: An instance of a configuration object
        rZ   )to_dict)r?   r4   rS   r*   r-   r-   r.   from_text_vision_configsf  s    
z#BlipConfig.from_text_vision_configs)NNr   rU   rV   )rB   rC   rD   rE   r2   r   rF   r   rK   r\   rJ   r-   r-   r+   r.   rT     s   .     rT   )rE   rH   typingr   Zconfiguration_utilsr   utilsr   Z
get_loggerrB   r;   Z"BLIP_PRETRAINED_CONFIG_ARCHIVE_MAPr   rK   rT   r-   r-   r-   r.   <module>   s$   
 c