U
    Ö9%eN  ã                   @   sB   d Z ddlmZ ddlmZ e e¡ZddiZG dd„ deƒZ	dS )	z CANINE model configurationé   )ÚPretrainedConfig)Úloggingzgoogle/canine-sz?https://huggingface.co/google/canine-s/resolve/main/config.jsonc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚCanineConfiga‰  
    This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
    CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CANINE
    [google/canine-s](https://huggingface.co/google/canine-s) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the deep Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoders.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoders, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        type_vocab_size (`int`, *optional*, defaults to 16):
            The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        downsampling_rate (`int`, *optional*, defaults to 4):
            The rate at which to downsample the original character sequence length before applying the deep Transformer
            encoder.
        upsampling_kernel_size (`int`, *optional*, defaults to 4):
            The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
            projecting back from `hidden_size`*2 to `hidden_size`.
        num_hash_functions (`int`, *optional*, defaults to 8):
            The number of hash functions to use. Each hash function has its own embedding matrix.
        num_hash_buckets (`int`, *optional*, defaults to 16384):
            The number of hash buckets to use.
        local_transformer_stride (`int`, *optional*, defaults to 128):
            The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
            TPU/XLA memory alignment.

    Example:

    ```python
    >>> from transformers import CanineConfig, CanineModel

    >>> # Initializing a CANINE google/canine-s style configuration
    >>> configuration = CanineConfig()

    >>> # Initializing a model (with random weights) from the google/canine-s style configuration
    >>> model = CanineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zcanineé   é   é   Úgeluçš™™™™™¹?é @  é   ç{®Gáz”?çê-™—q=é    é à  éà  é   é   é€   c                    s~   t ƒ jf |||dœ|—Ž || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|	| _|| _|| _|| _|| _|| _|| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_id)ÚsuperÚ__init__Úmax_position_embeddingsÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚtype_vocab_sizeÚlayer_norm_epsÚdownsampling_rateÚupsampling_kernel_sizeÚnum_hash_functionsÚnum_hash_bucketsÚlocal_transformer_stride)Úselfr   r   r   r   r   r   r    r   r"   r!   r#   r   r   r   r$   r%   r&   r'   r(   Úkwargs©Ú	__class__© ún/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/canine/configuration_canine.pyr   ^   s"    zCanineConfig.__init__)r   r   r   r   r   r	   r	   r
   r   r   r   r   r   r   r   r   r   r
   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r-   r-   r+   r.   r      s,   >                   ìr   N)
r2   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr/   ÚloggerZ$CANINE_PRETRAINED_CONFIG_ARCHIVE_MAPr   r-   r-   r-   r.   Ú<module>   s   
 ÿ