U
    9%e9                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ eeZd
diZG dd deeZG dd de
ZdS )z ConvNeXT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indiceszfacebook/convnext-tiny-224zJhttps://huggingface.co/facebook/convnext-tiny-224/resolve/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )ConvNextConfigaH  
    This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
    ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the ConvNeXT
    [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        patch_size (`int`, optional, defaults to 4):
            Patch size to use in the patch embedding layer.
        num_stages (`int`, optional, defaults to 4):
            The number of stages in the model.
        hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]):
            Dimensionality (hidden size) at each stage.
        depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]):
            Depth (number of blocks) for each stage.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        layer_scale_init_value (`float`, *optional*, defaults to 1e-6):
            The initial value for the layer scale.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            The drop rate for stochastic depth.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.

    Example:
    ```python
    >>> from transformers import ConvNextConfig, ConvNextModel

    >>> # Initializing a ConvNext convnext-tiny-224 style configuration
    >>> configuration = ConvNextConfig()

    >>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration
    >>> model = ConvNextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zconvnextr      Ngelu{Gz?-q=ư>           c                    s   t  jf | || _|| _|| _|d kr4ddddgn|| _|d krNddddgn|| _|| _|| _|| _	|	| _
|
| _|| _dgdd	 td
t| jd
 D  | _t||| jd\| _| _d S )N`      i  i   r   	   stemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   r/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/convnext/configuration_convnext.py
<listcomp>z   s     z+ConvNextConfig.__init__.<locals>.<listcomp>   )out_featuresout_indicesstage_names)super__init__num_channels
patch_size
num_stageshidden_sizesdepths
hidden_actinitializer_rangelayer_norm_epslayer_scale_init_valuedrop_path_rate
image_sizerangelenr    r   Z_out_featuresZ_out_indices)selfr#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r   r   kwargs	__class__r   r   r"   \   s$    &  zConvNextConfig.__init__)r   r   r   NNr   r   r   r   r   r   NN)__name__
__module____qualname____doc__Z
model_typer"   __classcell__r   r   r2   r   r   $   s    5             r   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )ConvNextOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr#   heightwidth)r   r      r   r   r0   r   r   r   inputs   s    zConvNextOnnxConfig.inputsc                 C   s   dS )Ngh㈵>r   r?   r   r   r   atol_for_validation   s    z&ConvNextOnnxConfig.atol_for_validationN)r4   r5   r6   r   parseZtorch_onnx_minimum_versionpropertyr   strintr@   floatrA   r   r   r   r   r9      s
   
 r9   N)r7   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   r   Z
get_loggerr4   loggerZ&CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r9   r   r   r   r   <module>   s   
 \