U
    9%eI                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ eeZd	d
iZG dd deZG dd de
ZdS )z DeiT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingz(facebook/deit-base-distilled-patch16-224zNhttps://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )
DeiTConfigaF  
    This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DeiT
    [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to `224`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to `16`):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to `3`):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        encoder_stride (`int`, `optional`, defaults to 16):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.

    Example:

    ```python
    >>> from transformers import DeiTConfig, DeiTModel

    >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration
    >>> configuration = DeiTConfig()

    >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration
    >>> model = DeiTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zdeit         gelu        {Gz?-q=      r   Tc                    sf   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _d S )N)super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasencoder_stride)selfr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   kwargs	__class__ j/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/deit/configuration_deit.pyr   `   s    zDeiTConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   r   Tr   )__name__
__module____qualname____doc__Z
model_typer   __classcell__r(   r(   r&   r)   r
   %   s"   8              r
   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )DeiTOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr!   heightwidth)r         r   r   r$   r(   r(   r)   inputs   s    zDeiTOnnxConfig.inputsc                 C   s   dS )Ng-C6?r(   r6   r(   r(   r)   atol_for_validation   s    z"DeiTOnnxConfig.atol_for_validationN)r*   r+   r,   r   parseZtorch_onnx_minimum_versionpropertyr   strintr7   floatr8   r(   r(   r(   r)   r/      s
   
 r/   N)r-   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Z
get_loggerr*   loggerZ"DEIT_PRETRAINED_CONFIG_ARCHIVE_MAPr
   r/   r(   r(   r(   r)   <module>   s   
_