U
    9%eV                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ eeZd
diZG dd deeZG dd de
ZdS )z DINOv2 model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indiceszfacebook/dinov2-basezDhttps://huggingface.co/facebook/dinov2-base/resolve/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )Dinov2Configa  
    This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
    Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Dinov2
    [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        mlp_ratio (`int`, *optional*, defaults to 4):
            Ratio of the hidden size of the MLPs relative to the `hidden_size`.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        layerscale_value (`float`, *optional*, defaults to 1.0):
           Initial value to use for layer scale.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            Stochastic depth rate per sample (when applied in the main path of residual layers).
        use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
            Whether to use the SwiGLU feedforward neural network.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.
        apply_layernorm (`bool`, *optional*, defaults to `True`):
            Whether to apply layer normalization to the feature maps in case the model is used as backbone.
        reshape_hidden_states (`bool`, *optional*, defaults to `True`):
            Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
            case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
            seq_len, hidden_size)`.

    Example:

    ```python
    >>> from transformers import Dinov2Config, Dinov2Model

    >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
    >>> configuration = Dinov2Config()

    >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
    >>> model = Dinov2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zdinov2         gelu        {Gz?ư>      r   T      ?FNc                    s   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _dgdd td|d D  | _t||| jd\| _| _|| _|| _d S )Nstemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   n/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/dinov2/configuration_dinov2.py
<listcomp>   s     z)Dinov2Config.__init__.<locals>.<listcomp>   )out_featuresout_indicesstage_names)super__init__hidden_sizenum_hidden_layersnum_attention_heads	mlp_ratio
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biaslayerscale_valuedrop_path_rateuse_swiglu_ffnranger    r   Z_out_featuresZ_out_indicesapply_layernormreshape_hidden_states)selfr#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r   r   r4   r5   kwargs	__class__r   r   r"   n   s2       zDinov2Config.__init__)r   r   r   r   r   r   r   r   r   r   r   r   Tr   r   FNNTT)__name__
__module____qualname____doc__Z
model_typer"   __classcell__r   r   r8   r   r   #   s.   H                    r   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )Dinov2OnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr.   heightwidth)r   r      r   r   r6   r   r   r   inputs   s    zDinov2OnnxConfig.inputsc                 C   s   dS )Ng-C6?r   rE   r   r   r   atol_for_validation   s    z$Dinov2OnnxConfig.atol_for_validationN)r:   r;   r<   r   parseZtorch_onnx_minimum_versionpropertyr   strintrF   floatrG   r   r   r   r   r?      s
   
 r?   N)r=   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   r   Z
get_loggerr:   loggerZ$DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAPr   r?   r   r   r   r   <module>   s   
 }