U
    9%e                     @   sD   d Z ddlmZ ddlmZ eeZdddZG dd deZ	d	S )
z FNet model configuration   )PretrainedConfig)loggingz@https://huggingface.co/google/fnet-base/resolve/main/config.jsonzAhttps://huggingface.co/google/fnet-large/resolve/main/config.json)zgoogle/fnet-basezgoogle/fnet-largec                       s&   e Zd ZdZdZd fdd	Z  ZS )
FNetConfigal  
    This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the FNet
    [google/fnet-base](https://huggingface.co/google/fnet-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 4):
            The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`):
            Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms.
            Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used.
        tpu_short_seq_length (`int`, *optional*, defaults to 512):
            The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT
            matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or
            equal to 4096 tokens.

    Example:

    ```python
    >>> from transformers import FNetConfig, FNetModel

    >>> # Initializing a FNet fnet-base style configuration
    >>> configuration = FNetConfig()

    >>> # Initializing a model (with random weights) from the fnet-base style configuration
    >>> model = FNetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zfnet }           gelu_new皙?      {Gz?-q=Fr         c                    sf   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|	| _	|| _
|
| _|| _|| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersintermediate_size
hidden_acthidden_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsuse_tpu_fourier_optimizationstpu_short_seq_length)selfr   r   r   r   r   r   r   r   r   r   r    r!   r   r   r   kwargs	__class__ j/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/fnet/configuration_fnet.pyr   Y   s    zFNetConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   Fr   r   r   r   )__name__
__module____qualname____doc__Z
model_typer   __classcell__r&   r&   r$   r'   r      s$   8               r   N)
r+   Zconfiguration_utilsr   utilsr   Z
get_loggerr(   loggerZ"FNET_PRETRAINED_CONFIG_ARCHIVE_MAPr   r&   r&   r&   r'   <module>   s   
