# coding=utf-8
# Copyright 2023 The Bigcode team and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GPTBigCode model."""
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
)
from .configuration_gpt_bigcode import GPTBigCodeConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "bigcode/gpt_bigcode-santacoder"
_CONFIG_FOR_DOC = "GPTBigCodeConfig"

GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "bigcode/gpt_bigcode-santacoder",
    # See all GPTBigCode models at https://huggingface.co/models?filter=gpt_bigcode
]


# Fused kernels
# Use separate functions for each case because conditionals prevent kernel fusion.
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
#  Is it doable without writing 32 functions?
@torch.jit.script
def upcast_masked_softmax(
    x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
):
    input_dtype = x.dtype
    x = x.to(softmax_dtype) * scale
    x = torch.where(mask, x, mask_value)
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
    input_dtype = x.dtype
    x = x.to(softmax_dtype) * scale
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
    x = torch.where(mask, x, mask_value)
    x = torch.nn.functional.softmax(x, dim=-1)
    return x


class GPTBigCodeAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False, layer_idx=None):
        super().__init__()
        self.mask_value = None

        self.multi_query = config.multi_query
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.kv_heads = 1 if self.multi_query else self.num_heads
        self.kv_dim = self.kv_heads * self.head_dim
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights
        self.is_cross_attention = is_cross_attention

        self.layer_idx = layer_idx
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        self.scale_attention_softmax_in_fp32 = (
            config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
        )

        if self.is_cross_attention:
            if self.multi_query:
                raise NotImplementedError("Multi-Query Attention not supported for cross_attention")

            self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
            self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
        else:
            self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)

        self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

    def _get_mask_value(self, device, dtype):
        # torch.where expects a tensor. We use a cache to avoid recreating it every time.
        if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
            self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
        return self.mask_value

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        dtype = query.dtype
        softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
        upcast = dtype != softmax_dtype

        unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
        scale_factor = unscale**-1
        if self.scale_attn_weights:
            scale_factor /= self.head_dim**0.5

        # MQA models: (batch_size, query_length, num_heads * head_dim)
        # MHA models: (batch_size, num_heads, query_length, head_dim)
        query_shape = query.shape
        batch_size = query_shape[0]
        key_length = key.size(-1)
        if self.multi_query:
            # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
            # -> (batch_size, query_length, num_heads, key_length)
            query_length = query_shape[1]
            attn_shape = (batch_size, query_length, self.num_heads, key_length)
            attn_view = (batch_size, query_length * self.num_heads, key_length)
            # No copy needed for MQA 2, or when layer_past is provided.
            query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
        else:
            # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
            # -> (batch_size, num_heads, query_length, key_length)
            query_length = query_shape[2]
            attn_shape = (batch_size, self.num_heads, query_length, key_length)
            attn_view = (batch_size * self.num_heads, query_length, key_length)
            # Always copies
            query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
            # No copy when layer_past is provided.
            key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)

        attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
        if query.device.type == "cpu":
            # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
            # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
            # but the fix has not been released as of pytorch version 2.0.0.
            attn_weights = torch.zeros_like(attn_weights)
            beta = 1
        else:
            beta = 0
        attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)

        if upcast:
            # Use a fused kernel to prevent a large overhead from casting and scaling.
            # Sub-optimal when the key length is not a multiple of 8.
            if attention_mask is None:
                attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
            else:
                mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
                attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
        else:
            if attention_mask is not None:
                mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)

                # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
                attn_weights = torch.where(attention_mask, attn_weights, mask_value)

            attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            if self.multi_query:
                head_mask = head_mask.transpose(1, 2)
            attn_weights = attn_weights * head_mask

        if self.multi_query:
            attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
        else:
            attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
        hidden_states: torch.Tensor,
        layer_past: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Optional[torch.Tensor]],
        Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
    ]:
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn") or not self.is_cross_attention:
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key_value = self.c_attn(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        elif self.multi_query:
            query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
        else:
            # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
            # i.e., the memory layout is not the same as GPT2.
            # This makes the concatenation with past_key_value more efficient.
            query, key_value = (
                self.c_attn(hidden_states)
                .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
                .transpose(1, 2)
                .split((self.head_dim, 2 * self.head_dim), dim=3)
            )

        if layer_past is not None:
            key_value = torch.cat((layer_past, key_value), dim=-2)
        present = key_value if use_cache else None

        key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)

        attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)

        if not self.multi_query:
            attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            if self.multi_query:
                # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
                attn_weights = attn_weights.transpose(1, 2)
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class GPTBigCodeMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = nn.Linear(embed_dim, intermediate_size)
        self.c_proj = nn.Linear(intermediate_size, embed_dim)
        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPTBigCodeBlock(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        hidden_size = config.hidden_size
        self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPTBigCodeAttention(config, layer_idx=layer_idx)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        if config.add_cross_attention:
            if config.multi_query:
                raise NotImplementedError("Cross-attention not implemented for MQA")
            self.crossattention = GPTBigCodeAttention(config, is_cross_attention=True, layer_idx=layer_idx)
            self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = GPTBigCodeMLP(self.inner_dim, config)

    def forward(
        self,
        hidden_states: Optional[Tuple[torch.Tensor]],
        layer_past: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
    ]:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        if encoder_hidden_states is not None:
            # add one self-attention block for cross-attention
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
                    "cross-attention layers by setting `config.add_cross_attention=True`"
                )
            residual = hidden_states
            hidden_states = self.ln_cross_attn(hidden_states)
            cross_attn_outputs = self.crossattention(
                hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
            )
            attn_output = cross_attn_outputs[0]
            # residual connection
            hidden_states = residual + attn_output
            outputs = outputs + cross_attn_outputs[2:]  # add cross attentions if we output attention weights

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions, cross_attentions)


class GPTBigCodePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTBigCodeConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["GPTBigCodeBlock"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)):
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            module.c_proj.weight.data.normal_(
                mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
            )
            module.c_proj._is_hf_initialized = True
        elif isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    # Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->GPTBigCode
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GPTBigCodeModel):
            module.gradient_checkpointing = value


GPT_BIGCODE_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`GPTBigCodeConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

GPT_BIGCODE_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
            `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
            sequence tokens in the vocabulary.

            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
            `past_key_values`. In other words, the `attention_mask` always has to have the length:
            `len(past_key_values) + len(input_ids)`

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
    GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.multi_query = config.multi_query
        self.embed_dim = config.hidden_size

        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)

        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
        )

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if batch_size <= 0:
            raise ValueError("batch_size has to be defined and > 0")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0].size(-2)

        if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_length > 0:
                position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
        elif position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Self-attention mask.
        query_length = input_shape[-1]
        key_length = past_length + query_length
        self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]

        if attention_mask is not None:
            self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
                dtype=torch.bool, device=self_attention_mask.device
            )

        # MQA models: (batch_size, query_length, n_heads, key_length)
        # MHA models: (batch_size, n_heads, query_length, key_length)
        attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if (
            self.config.add_cross_attention
            and encoder_hidden_states is not None
            and encoder_attention_mask is not None
        ):
            if encoder_attention_mask.dim() == 2:
                encoder_attention_mask.unsqueeze(1)
            assert encoder_attention_mask.dim() == 3
            encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = [] if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache:
                presents.append(outputs[1])

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


@add_start_docstrings(
    """
    The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
    embeddings).
    """,
    GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTBigCodeModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)


@add_start_docstrings(
    """
    The GPTBigCode Model transformer with a sequence classification head on top (linear layer).

    [`GPTBigCodeForSequenceClassification`] uses the last token in order to do the classification, as other causal
    models (e.g. GPT-1) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTBigCodeModel(config)
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape[:2]
        else:
            batch_size, sequence_length = inputs_embeds.shape[:2]

        assert (
            self.config.pad_token_id is not None or batch_size == 1
        ), "Cannot handle batch sizes > 1 if no padding token is defined."
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
                    logits.device
                )
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)

            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    GPT_BIGCODE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
    for Named-Entity-Recognition (NER) tasks.
    """,
    GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.transformer = GPTBigCodeModel(config)
        if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
            classifier_dropout = config.classifier_dropout
        elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]
        hidden_states = self.dropout(hidden_states)
        logits = self.classifier(hidden_states)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device))

        if not return_dict:
            output = (logits,) + transformer_outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
