U
    9%e34                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ erdd
lmZ ddlmZ eeZddiZG dd deZG dd deZdS )z LayoutLMv3 model configuration    )OrderedDict)TYPE_CHECKINGAnyMappingOptional)version   )PretrainedConfig)
OnnxConfig) compute_effective_axis_dimension)logging)ProcessorMixin)
TensorTypezmicrosoft/layoutlmv3-basezIhttps://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )LayoutLMv3Configa  
    This is the configuration class to store the configuration of a [`LayoutLMv3Model`]. It is used to instantiate an
    LayoutLMv3 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the LayoutLMv3
    [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the LayoutLMv3 model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`LayoutLMv3Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv3Model`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the 2D position embedding might ever be used with. Typically set this to something
            large just in case (e.g., 1024).
        coordinate_size (`int`, *optional*, defaults to `128`):
            Dimension of the coordinate embeddings.
        shape_size (`int`, *optional*, defaults to `128`):
            Dimension of the width and height embeddings.
        has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a relative attention bias in the self-attention mechanism.
        rel_pos_bins (`int`, *optional*, defaults to 32):
            The number of relative position bins to be used in the self-attention mechanism.
        max_rel_pos (`int`, *optional*, defaults to 128):
            The maximum number of relative positions to be used in the self-attention mechanism.
        max_rel_2d_pos (`int`, *optional*, defaults to 256):
            The maximum number of relative 2D positions in the self-attention mechanism.
        rel_2d_pos_bins (`int`, *optional*, defaults to 64):
            The number of 2D relative position bins in the self-attention mechanism.
        has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a spatial attention bias in the self-attention mechanism.
        visual_embed (`bool`, *optional*, defaults to `True`):
            Whether or not to add patch embeddings.
        input_size (`int`, *optional*, defaults to `224`):
            The size (resolution) of the images.
        num_channels (`int`, *optional*, defaults to `3`):
            The number of channels of the images.
        patch_size (`int`, *optional*, defaults to `16`)
            The size (resolution) of the patches.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Example:

    ```python
    >>> from transformers import LayoutLMv3Config, LayoutLMv3Model

    >>> # Initializing a LayoutLMv3 microsoft/layoutlmv3-base style configuration
    >>> configuration = LayoutLMv3Config()

    >>> # Initializing a model (with random weights) from the microsoft/layoutlmv3-base style configuration
    >>> model = LayoutLMv3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Z
layoutlmv3Y           gelu皙?      {Gz?h㈵>   r         T    @         r      Nc                     s   t  jf |||||||||	|
|||||d| || _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|| _|| _|| _|| _d S )N)
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epspad_token_idbos_token_ideos_token_id)super__init__max_2d_position_embeddingscoordinate_size
shape_sizehas_relative_attention_biasrel_pos_binsmax_rel_poshas_spatial_attention_biasrel_2d_pos_binsmax_rel_2d_pos
text_embedvisual_embed
input_sizenum_channels
patch_sizeclassifier_dropout) selfr"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r3   r4   r5   r6   r7   r8   r:   r;   r9   r<   r=   r>   r?   r@   rA   kwargs	__class__ v/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/layoutlmv3/configuration_layoutlmv3.pyr2   |   sD    "zLayoutLMv3Config.__init__)r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Tr   r   r   r   TTTr    r   r!   N)__name__
__module____qualname____doc__Z
model_typer2   __classcell__rF   rF   rD   rG   r   (   sB   Q                              r   c                   @   s   e Zd ZedZeeeee	ef f dddZ
eedddZee	dddZdde	e	eed e	e	e	eeef d	ddZdS )LayoutLMv3OnnxConfigz1.12)returnc              
   C   s   | j dkrFtddddfddddfddddfddd	d
ddfgS tddddfddddfddddfddd	dfgS d S )N)zquestion-answeringzsequence-classificationZ	input_idsbatchsequence)r   r   Zattention_maskZbboxZpixel_valuesr?   heightwidth)r   r   r   r   )taskr   rB   rF   rF   rG   inputs   s    
	zLayoutLMv3OnnxConfig.inputsc                 C   s   dS )Nr   rF   rT   rF   rF   rG   atol_for_validation   s    z(LayoutLMv3OnnxConfig.atol_for_validationc                 C   s   dS )Nr   rF   rT   rF   rF   rG   default_onnx_opset   s    z'LayoutLMv3OnnxConfig.default_onnx_opsetFNr   (   r   r   )		processor
batch_size
seq_lengthis_pair	frameworkr?   image_widthimage_heightrN   c	                 C   s   t |jdd t|tjdd}|j|}	t|tj|	d}d|jj	g| gg| }
dddd	ggg| }| 
||||}t|||
||d
}|S )a  
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            processor ([`ProcessorMixin`]):
                The processor associated with this model configuration.
            batch_size (`int`, *optional*, defaults to -1):
                The batch size to export the model for (-1 means dynamic axis).
            seq_length (`int`, *optional*, defaults to -1):
                The sequence length to export the model for (-1 means dynamic axis).
            is_pair (`bool`, *optional*, defaults to `False`):
                Indicate if the input is a pair (sentence 1, sentence 2).
            framework (`TensorType`, *optional*, defaults to `None`):
                The framework (PyTorch or TensorFlow) that the processor will generate tensors for.
            num_channels (`int`, *optional*, defaults to 3):
                The number of channels of the generated images.
            image_width (`int`, *optional*, defaults to 40):
                The width of the generated images.
            image_height (`int`, *optional*, defaults to 40):
                The height of the generated images.

        Returns:
            Mapping[str, Any]: holding the kwargs to provide to the model's forward function
        Z	apply_ocrFr   )Zfixed_dimensionZnum_token_to_add 0   T   I   r   )textZboxesZreturn_tensors)setattrZimage_processorr   r
   Zdefault_fixed_batchZ	tokenizerZnum_special_tokens_to_addZdefault_fixed_sequencejoinZ	unk_tokenZ_generate_dummy_imagesdict)rB   rZ   r[   r\   r]   r^   r?   r_   r`   Ztoken_to_addZ
dummy_textZdummy_bboxesZdummy_imagerU   rF   rF   rG   generate_dummy_inputs   s0    %    	z*LayoutLMv3OnnxConfig.generate_dummy_inputs)rX   rX   FNr   rY   rY   )rH   rI   rJ   r   parseZtorch_onnx_minimum_versionpropertyr   strintrU   floatrV   rW   boolr   r   ri   rF   rF   rF   rG   rM      s2   
        
rM   N)rK   collectionsr   typingr   r   r   r   	packagingr   Zconfiguration_utilsr	   Zonnxr
   Z
onnx.utilsr   utilsr   Zprocessing_utilsr   r   Z
get_loggerrH   loggerZ(LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAPr   rM   rF   rF   rF   rG   <module>   s"   
  