U
    9%e*                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ eeZd	d
iZG dd deZG dd de
ZdS )z LeViT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingzfacebook/levit-128SzChttps://huggingface.co/facebook/levit-128S/resolve/main/config.jsonc                       sf   e Zd ZdZdZdddddddd	d
gdddgdddgdddgddddgdddgdf fdd	Z  ZS )LevitConfiga  
    This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LeViT
    [facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size of the input image.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input image.
        kernel_size (`int`, *optional*, defaults to 3):
            The kernel size for the initial convolution layers of patch embedding.
        stride (`int`, *optional*, defaults to 2):
            The stride size for the initial convolution layers of patch embedding.
        padding (`int`, *optional*, defaults to 1):
            The padding size for the initial convolution layers of patch embedding.
        patch_size (`int`, *optional*, defaults to 16):
            The patch size for embeddings.
        hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`):
            Dimension of each of the encoder blocks.
        num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`):
            Number of attention heads for each attention layer in each block of the Transformer encoder.
        depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
            The number of layers in each encoder block.
        key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`):
            The size of key in each of the encoder blocks.
        drop_path_rate (`int`, *optional*, defaults to 0):
            The dropout probability for stochastic depths, used in the blocks of the Transformer encoder.
        mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
            Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
            encoder blocks.
        attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
            Ratio of the size of the output dimension compared to input dimension of attention layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import LevitConfig, LevitModel

    >>> # Initializing a LeViT levit-128S style configuration
    >>> configuration = LevitConfig()

    >>> # Initializing a model (with random weights) from the levit-128S style configuration
    >>> model = LevitModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zlevit   r                  i           r   g{Gz?c                    s   t  jf | || _|| _|| _|| _|| _|| _|| _|	| _	|
| _
|| _|| _|| _|| _|| _d|
d |d |
d  dddgd|
d |d |
d  dddgg| _d S )NZ	Subsampler   r   r   r   )super__init__
image_sizenum_channelskernel_sizestridepaddinghidden_sizesnum_attention_headsdepthskey_dimdrop_path_rate
patch_sizeattention_ratio	mlp_ratioinitializer_rangeZdown_ops)selfr   r   r   r   r   r    r   r   r   r   r   r"   r!   r#   kwargs	__class__ l/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/levit/configuration_levit.pyr   \   s$    zLevitConfig.__init__)__name__
__module____qualname____doc__Z
model_typer   __classcell__r(   r(   r&   r)   r
   #   s"   6r
   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )LevitOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr   heightwidth)r   r   r   r   r   r$   r(   r(   r)   inputs   s    zLevitOnnxConfig.inputsc                 C   s   dS )Ng-C6?r(   r4   r(   r(   r)   atol_for_validation   s    z#LevitOnnxConfig.atol_for_validationN)r*   r+   r,   r   parseZtorch_onnx_minimum_versionpropertyr   strintr5   floatr6   r(   r(   r(   r)   r/      s
   
 r/   N)r-   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Z
get_loggerr*   loggerZ#LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAPr
   r/   r(   r(   r(   r)   <module>   s   
 a