U
    9%e"                     @   s>   d Z ddlmZ ddlmZ eeZi ZG dd deZ	dS )z LLaMA model configuration   )PretrainedConfig)loggingc                       s4   e Zd ZdZdZdgZd fdd	Zdd Z  ZS )LlamaConfiga)  
    This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LLaMA-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        pretraining_tp (`int`, *optional*, defaults to `1`):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
            necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
            issue](https://github.com/pytorch/pytorch/issues/76232).
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
            Llama 2 up to 4096, CodeLlama up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
            is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.

        Example:

    ```python
    >>> from transformers import LlamaModel, LlamaConfig

    >>> # Initializing a LLaMA llama-7b style configuration
    >>> configuration = LlamaConfig()

    >>> # Initializing a model from the llama-7b style configuration
    >>> model = LlamaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```llamaZpast_key_values }      +      Nsilu   {Gz?ư>T      F     @c                    s   || _ || _|| _|| _|| _|| _|d kr0|}|| _|| _|	| _|
| _	|| _
|| _|| _|| _|   || _t jf ||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_epspretraining_tp	use_cache
rope_thetarope_scaling_rope_scaling_validationattention_biassuper__init__)selfr   r   r   r   r   r   r   r   r   r   r    r   r   r   r   r   r!   r"   r$   kwargs	__class__ l/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/llama/configuration_llama.pyr&   n   s4    zLlamaConfig.__init__c                 C   s   | j dkrdS t| j tr(t| j dkr8td| j  | j dd}| j dd}|dksd|dkrrtd| |dkst|tr|dkrtd	| dS )
z<
        Validate the `rope_scaling` configuration.
        Nr   zS`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, got typefactor)ZlinearZdynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z8`rope_scaling`'s factor field must be an float > 1, got )r"   
isinstancedictlen
ValueErrorgetfloat)r'   Zrope_scaling_typeZrope_scaling_factorr+   r+   r,   r#      s    

z$LlamaConfig._rope_scaling_validation)r   r   r   r	   r	   Nr
   r   r   r   TNr   r   r   Fr   NF)	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer&   r#   __classcell__r+   r+   r)   r,   r      s0   K                   5r   N)
r8   Zconfiguration_utilsr   utilsr   Z
get_loggerr5   loggerZ#LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAPr   r+   r+   r+   r,   <module>   s
   
