# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available


_import_structure = {
    "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
    "tokenization_m2m_100": ["M2M100Tokenizer"],
}


try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_m2m_100"] = [
        "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
        "M2M100ForConditionalGeneration",
        "M2M100Model",
        "M2M100PreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config, M2M100OnnxConfig
    from .tokenization_m2m_100 import M2M100Tokenizer

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_m2m_100 import (
            M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
            M2M100ForConditionalGeneration,
            M2M100Model,
            M2M100PreTrainedModel,
        )


else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
