U
    9%e!                     @   sv   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZdd	iZG d
d deZG dd deZdS )z MobileBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingzgoogle/mobilebert-uncasedzIhttps://huggingface.co/google/mobilebert-uncased/resolve/main/config.jsonc                       s*   e Zd ZdZeZdZd fdd	Z  ZS )MobileBertConfiga  
    This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
    is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
    [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 512):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or
            [`TFMobileBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.

        pad_token_id (`int`, *optional*, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (`int`, *optional*, defaults to 128):
            The dimension of the word embedding vectors.
        trigram_input (`bool`, *optional*, defaults to `True`):
            Use a convolution of trigram as input.
        use_bottleneck (`bool`, *optional*, defaults to `True`):
            Whether to use bottleneck in BERT.
        intra_bottleneck_size (`int`, *optional*, defaults to 128):
            Size of bottleneck layer output.
        use_bottleneck_attention (`bool`, *optional*, defaults to `False`):
            Whether to use attention inputs from the bottleneck transformation.
        key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`):
            Whether to use the same linear transformation for query&key in the bottleneck.
        num_feedforward_networks (`int`, *optional*, defaults to 4):
            Number of FFNs in a block.
        normalization_type (`str`, *optional*, defaults to `"no_norm"`):
            The normalization type in MobileBERT.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import MobileBertConfig, MobileBertModel

    >>> # Initializing a MobileBERT configuration
    >>> configuration = MobileBertConfig()

    >>> # Initializing a model (with random weights) from the configuration above
    >>> model = MobileBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```

    Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained
    checkpoints.
    Z
mobilebert:w           relu        皙?   {Gz?-q=r      TFno_normNc                    s   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| jr|| _n|| _|| _d S )Npad_token_id)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizetrigram_inputuse_bottleneckintra_bottleneck_sizeuse_bottleneck_attentionkey_query_shared_bottlenecknum_feedforward_networksnormalization_typeclassifier_activationZtrue_hidden_sizeclassifier_dropout)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   kwargs	__class__ v/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/mobilebert/configuration_mobilebert.pyr   r   s4    zMobileBertConfig.__init__)r	   r
   r   r   r
   r   r   r   r
   r   r   r   r   r   TTr   FTr   r   TN)	__name__
__module____qualname____doc__(MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAPZpretrained_config_archive_mapZ
model_typer   __classcell__r2   r2   r0   r3   r      s6   O                       r   c                   @   s.   e Zd Zeeeeeef f dddZdS )MobileBertOnnxConfig)returnc                 C   s<   | j dkrdddd}n
ddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r      r   )r   r?   Z	input_idsZattention_maskZtoken_type_ids)taskr   )r.   Zdynamic_axisr2   r2   r3   inputs   s    

zMobileBertOnnxConfig.inputsN)r4   r5   r6   propertyr   strintrA   r2   r2   r2   r3   r:      s   r:   N)r7   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr4   loggerr8   r   r:   r2   r2   r2   r3   <module>   s   
  