U
    9%ei@                     @   s   d Z ddlZddlmZ ddlmZmZmZmZm	Z	m
Z
 erTddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ eeZddddZG dd deZG dd deZG dd deZG dd deZdS )z OWL-ViT model configuration    NOrderedDict)TYPE_CHECKINGAnyDictMappingOptionalUnion   )ProcessorMixin)
TensorType)PretrainedConfig)
OnnxConfig)loggingzJhttps://huggingface.co/google/owlvit-base-patch32/resolve/main/config.jsonzJhttps://huggingface.co/google/owlvit-base-patch16/resolve/main/config.jsonzKhttps://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json)zgoogle/owlvit-base-patch32zgoogle/owlvit-base-patch16zgoogle/owlvit-large-patch14c                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )OwlViTTextConfiga  
    This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
    OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OwlViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`OwlViTTextModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 16):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import OwlViTTextConfig, OwlViTTextModel

    >>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTTextConfig()

    >>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zowlvit_text_model                  
quick_geluh㈵>        {Gz?      ?r       c                    s`   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddings
hidden_actlayer_norm_epsattention_dropoutinitializer_rangeinitializer_factor)selfr#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r   r   r    kwargs	__class__ n/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/owlvit/configuration_owlvit.pyr"   _   s    zOwlViTTextConfig.__init__r   pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typeowlvittext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr7   loggerwarning	from_dictclsr5   r/   config_dictr2   r2   r3   from_pretrained   s    
 z OwlViTTextConfig.from_pretrained)r   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r7   r"   classmethodr	   strosPathLikerH   __classcell__r2   r2   r0   r3   r   (   s&   4               r   c                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )OwlViTVisionConfigag  
    This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
    an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 768):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float``, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import OwlViTVisionConfig, OwlViTVisionModel

    >>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTVisionConfig()

    >>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zowlvit_vision_model      r   r
       r   r   r   r   r   c                    sZ   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _d S )N)r!   r"   r$   r%   r&   r'   num_channels
image_size
patch_sizer)   r*   r+   r,   r-   )r.   r$   r%   r&   r'   rW   rX   rY   r)   r*   r+   r,   r-   r/   r0   r2   r3   r"      s    zOwlViTVisionConfig.__init__r   r4   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr7   r8   vision_configr:   r;   r<   r=   rE   r2   r2   r3   rH      s    
 z"OwlViTVisionConfig.from_pretrained)rT   rU   r   r   r
   rT   rV   r   r   r   r   r   rI   r2   r2   r0   r3   rS      s"   4            rS   c                       sX   e Zd ZdZdZd fdd	Zeeee	j
f d	d
ddZeeedddZ  ZS )OwlViTConfiga   
    [`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
    instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
            implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.
    r8   Nr   /L
F@Tc                    sn   t  jf | |d kr$i }td |d kr:i }td tf || _tf || _|| _|| _	|| _
d| _d S )NzKtext_config is None. Initializing the OwlViTTextConfig with default values.zOvision_config is None. initializing the OwlViTVisionConfig with default values.r   )r!   r"   rB   infor   r9   rS   rZ   projection_dimlogit_scale_init_valuereturn_dictr-   )r.   r9   rZ   r^   r_   r`   r/   r0   r2   r3   r"     s    	

zOwlViTConfig.__init__r   r4   c                 K   sh   |  | | j|f|\}}d|krZt| drZ|d | jkrZtd|d  d| j d | j|f|S )Nr7   r:   r;   r<   )r>   r?   rA   r7   rB   rC   rD   rE   r2   r2   r3   rH   0  s    
 zOwlViTConfig.from_pretrained)r9   rZ   c                 K   s"   i }||d< ||d< | j |f|S )z
        Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
        model configuration.

        Returns:
            [`OwlViTConfig`]: An instance of a configuration object
        r9   rZ   )rD   )rF   r9   rZ   r/   rG   r2   r2   r3   from_text_vision_configs>  s    	z%OwlViTConfig.from_text_vision_configs)NNr   r\   T)rJ   rK   rL   rM   r7   r"   rN   r	   rO   rP   rQ   rH   r   ra   rR   r2   r2   r0   r3   r[      s        r[   c                       s   e Zd Zeeeeeef f dddZeeeeeef f dddZee	dddZ
dd
eeed eeef d fddZeedddZ  ZS )OwlViTOnnxConfig)r6   c                 C   s0   t ddddfdddddd	fd
dddfgS )NZ	input_idsbatchsequence)r      Zpixel_valuesrW   heightwidth)r   re      r
   Zattention_maskr   r.   r2   r2   r3   inputsO  s    zOwlViTOnnxConfig.inputsc                 C   s0   t dddifdddifdddifdddifgS )NZlogits_per_imager   rc   Zlogits_per_textZtext_embedsZimage_embedsr   ri   r2   r2   r3   outputsY  s    



zOwlViTOnnxConfig.outputsc                 C   s   dS )Ng-C6?r2   ri   r2   r2   r3   atol_for_validationd  s    z$OwlViTOnnxConfig.atol_for_validationNr   r   )	processor
batch_size
seq_length	frameworkr6   c                    s2   t  j|j|||d}t  j|j||d}||S )N)ro   rp   rq   )ro   rq   )r!   generate_dummy_inputsZ	tokenizerZimage_processor)r.   rn   ro   rp   rq   Ztext_input_dictZimage_input_dictr0   r2   r3   rr   h  s         z&OwlViTOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r2   ri   r2   r2   r3   default_onnx_opsetw  s    z#OwlViTOnnxConfig.default_onnx_opset)rm   rm   N)rJ   rK   rL   propertyr   rO   intrj   rk   floatrl   r   r   rr   rt   rR   r2   r2   r0   r3   rb   N  s$    	 
   
rb   )rM   rP   collectionsr   typingr   r   r   r   r   r	   Zprocessing_utilsr   utilsr   Zconfiguration_utilsr   Zonnxr   r   Z
get_loggerrJ   rB   Z$OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAPr   rS   r[   rb   r2   r2   r2   r3   <module>   s$    
jiS