U
    Ö9%e"  ã                   @   sv   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
 e¡Zdd	iZG d
d„ deƒZG dd„ deƒZdS )z PLBART model configurationé    ©ÚOrderedDict)ÚMappingé   )ÚPretrainedConfig)ÚOnnxConfigWithPast)Úloggingzuclanlp/plbart-basezChttps://huggingface.co/uclanlp/plbart-base/resolve/main/config.jsonc                       s6   e Zd ZdZdZdgZdddœZd‡ fdd„	Z‡  ZS )ÚPLBartConfiga  
    This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an
    PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PLBART
    [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50005):
            Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PLBartModel`].
        d_model (`int`, *optional*, defaults to 768):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)
        forced_eos_token_id (`int`, *optional*, defaults to 2):
            The id of the token to force as the last generated token when `max_length` is reached. Usually set to
            `eos_token_id`.

    Example:

    ```python
    >>> from transformers import PLBartConfig, PLBartModel

    >>> # Initializing a PLBART uclanlp/plbart-base style configuration
    >>> configuration = PLBartConfig()

    >>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration
    >>> model = PLBartModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZplbartZpast_key_valuesÚencoder_attention_headsÚd_model)Znum_attention_headsZhidden_sizeéUÃ  é   é   é   é   ç        TÚgelué   çš™™™™™¹?ç{®Gáz”?é   r   é   c                    sš   || _ || _|| _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|| _|	| _|
| _|| _|| _|| _|| _tƒ jf |||||dœ|—Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚis_encoder_decoderÚforced_eos_token_id)Ú
vocab_sizeÚmax_position_embeddingsr   Úencoder_ffn_dimÚencoder_layersr
   Údecoder_ffn_dimÚdecoder_layersÚdecoder_attention_headsÚdropoutÚattention_dropoutÚactivation_dropoutÚactivation_functionÚinit_stdÚencoder_layerdropÚdecoder_layerdropÚclassifier_dropoutÚ	use_cacheZnum_hidden_layersÚscale_embeddingÚsuperÚ__init__)Úselfr   r   r    r   r
   r"   r!   r#   r)   r*   r,   r   r'   r   r$   r%   r&   r(   r+   r-   r   r   r   r   Úkwargs©Ú	__class__© ún/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/plbart/configuration_plbart.pyr/   m   s:    ûúzPLBartConfig.__init__)r   r   r   r   r   r   r   r   r   r   TTr   r   r   r   r   r   r   Tr   r   r   r   )	Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr/   Ú__classcell__r4   r4   r2   r5   r	       s:   H
                        çr	   c                   @   sP   e Zd Zeeeeeef f dœdd„ƒZeeeeeef f dœdd„ƒZdS )ÚPLBartOnnxConfig)Úreturnc                 C   s    t ddddœfddddœfgƒS )NZ	input_idsÚbatchÚsequence©r   r   Zattention_maskr   ©r0   r4   r4   r5   Úinputs¨   s
    þÿzPLBartOnnxConfig.inputsc                 C   sV   | j r2tddddœfddddœfddddœfgƒS tddddœfddddœfgƒS d S )NZlast_hidden_stater=   r>   r?   Z	past_keys)r   r   Zencoder_last_hidden_state)Zuse_pastr   r@   r4   r4   r5   Úoutputs±   s    ýÿþÿzPLBartOnnxConfig.outputsN)	r6   r7   r8   Úpropertyr   ÚstrÚintrA   rB   r4   r4   r4   r5   r;   §   s    r;   N)r9   Úcollectionsr   Útypingr   Zconfiguration_utilsr   Zonnxr   Úutilsr   Z
get_loggerr6   ÚloggerZ$PLBART_PRETRAINED_CONFIG_ARCHIVE_MAPr	   r;   r4   r4   r4   r5   Ú<module>   s   
 ÿ 