# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_sentencepiece_available,
    is_tokenizers_available,
    is_torch_available,
)


_import_structure = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}

try:
    if not is_sentencepiece_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_reformer"] = ["ReformerTokenizer"]

try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_reformer_fast"] = ["ReformerTokenizerFast"]

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_reformer"] = [
        "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
        "ReformerAttention",
        "ReformerForMaskedLM",
        "ReformerForQuestionAnswering",
        "ReformerForSequenceClassification",
        "ReformerLayer",
        "ReformerModel",
        "ReformerModelWithLMHead",
        "ReformerPreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig

    try:
        if not is_sentencepiece_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_reformer import ReformerTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_reformer_fast import ReformerTokenizerFast

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_reformer import (
            REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            ReformerAttention,
            ReformerForMaskedLM,
            ReformerForQuestionAnswering,
            ReformerForSequenceClassification,
            ReformerLayer,
            ReformerModel,
            ReformerModelWithLMHead,
            ReformerPreTrainedModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
