U
    9%eA                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ eeZd
diZG dd deeZG dd de
ZdS )z ResNet model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indiceszmicrosoft/resnet-50z@https://huggingface.co/microsoft/resnet-50/blob/main/config.jsonc                	       sP   e Zd ZdZdZddgZddddd	d
gddddgdddddf	 fdd	Z  ZS )ResNetConfiga<  
    This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
    ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the ResNet
    [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embedding_size (`int`, *optional*, defaults to 64):
            Dimensionality (hidden size) for the embedding layer.
        hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
            Dimensionality (hidden size) at each stage.
        depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
            Depth (number of layers) for each stage.
        layer_type (`str`, *optional*, defaults to `"bottleneck"`):
            The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
            `"bottleneck"` (used for larger models like resnet-50 and above).
        hidden_act (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
            are supported.
        downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
            If `True`, the first stage will downsample the inputs using a `stride` of 2.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.

    Example:
    ```python
    >>> from transformers import ResNetConfig, ResNetModel

    >>> # Initializing a ResNet resnet-50 style configuration
    >>> configuration = ResNetConfig()

    >>> # Initializing a model (with random weights) from the resnet-50 style configuration
    >>> model = ResNetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    ZresnetbasicZ
bottleneckr   @      i   i   i         ZreluFNc
                    s   t  jf |
 || jkr4td| dd| j || _|| _|| _|| _|| _	|| _
|| _dgdd tdt|d D  | _t||	| jd\| _| _d S )	Nzlayer_type=z is not one of ,stemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   n/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/resnet/configuration_resnet.py
<listcomp>o   s     z)ResNetConfig.__init__.<locals>.<listcomp>   )out_featuresout_indicesstage_names)super__init__layer_types
ValueErrorjoinnum_channelsembedding_sizehidden_sizesdepths
layer_type
hidden_actdownsample_in_first_stagerangelenr   r   Z_out_featuresZ_out_indices)selfr"   r#   r$   r%   r&   r'   r(   r   r   kwargs	__class__r   r   r   X   s     
$  zResNetConfig.__init__)__name__
__module____qualname____doc__Z
model_typer   r   __classcell__r   r   r-   r   r   #   s   1

r   c                   @   sJ   e Zd ZedZeeeee	ef f dddZ
eedddZdS )ResNetOnnxConfigz1.11)returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr"   heightwidth)r   r      r   r   r+   r   r   r   inputsx   s    zResNetOnnxConfig.inputsc                 C   s   dS )NgMbP?r   r:   r   r   r   atol_for_validation   s    z$ResNetOnnxConfig.atol_for_validationN)r/   r0   r1   r   parseZtorch_onnx_minimum_versionpropertyr   strintr;   floatr<   r   r   r   r   r4   u   s
   
 r4   N)r2   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   r   Z
get_loggerr/   loggerZ$RESNET_PRETRAINED_CONFIG_ARCHIVE_MAPr   r4   r   r   r   r   <module>   s   
 R