U
    9%e                     @   sB   d Z ddlmZ ddlmZ eeZddiZG dd deZ	dS )	z VilT model configuration   )PretrainedConfig)loggingzdandelin/vilt-b32-mlmzBhttps://huggingface.co/dandelin/vilt-b32-mlm/blob/main/config.jsonc                       s&   e Zd ZdZdZd fdd	Z  ZS )
ViltConfiga  
    This is the configuration class to store the configuration of a [`ViLTModel`]. It is used to instantiate an ViLT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the ViLT
    [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the text part of the model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`ViltModel`].
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ViltModel`]. This is used when encoding
            text.
        modality_type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the modalities passed when calling [`ViltModel`]. This is used after concatening the
            embeddings of the text and image modalities.
        max_position_embeddings (`int`, *optional*, defaults to 40):
            The maximum sequence length that this model might ever be used with.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 384):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        max_image_length (`int`, *optional*, defaults to -1):
            The maximum number of patches to take as input for the Transformer encoder. If set to a positive integer,
            the encoder will sample `max_image_length` patches at maximum. If set to -1, will not be taken into
            account.
        num_images (`int`, *optional*, defaults to -1):
            The number of images to use for natural language visual reasoning. If set to a positive integer, will be
            used by [`ViltForImagesAndTextClassification`] for defining the classifier head.

    Example:

    ```python
    >>> from transformers import ViLTModel, ViLTConfig

    >>> # Initializing a ViLT dandelin/vilt-b32-mlm style configuration
    >>> configuration = ViLTConfig()

    >>> # Initializing a model from the dandelin/vilt-b32-mlm style configuration
    >>> model = ViLTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zvilt:w     (            gelu        {Gz?-q=      r   TFc                    s   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )Ntie_word_embeddings)super__init__
vocab_sizetype_vocab_sizemodality_type_vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasmax_image_length
num_images)selfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r   r'   kwargs	__class__ j/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/vilt/configuration_vilt.pyr   e   s(    zViltConfig.__init__)r   r   r   r   r   r	   r	   r
   r   r   r   r   r   r   r   r   Tr   Fr   )__name__
__module____qualname____doc__Z
model_typer   __classcell__r,   r,   r*   r-   r      s.   F                    r   N)
r1   Zconfiguration_utilsr   utilsr   Z
get_loggerr.   loggerZ"VILT_PRETRAINED_CONFIG_ARCHIVE_MAPr   r,   r,   r,   r-   <module>   s   
 